linear-algebra पर टैग किए गए जवाब

गणित का एक क्षेत्र परिमित आयामी वेक्टर रिक्त स्थान के अध्ययन से संबंधित है, जिसमें मैट्रिस और उनके हेरफेर शामिल हैं, जो आंकड़ों में महत्वपूर्ण हैं।

3
डिफ़ॉल्ट मैट्रिक्स मान वर्णक्रमीय मानदंड क्यों नहीं फ्रोबेनियस मानदंड है?
वेक्टर मानक के लिए, L2 मानदंड या "यूक्लिडियन दूरी" व्यापक रूप से उपयोग और सहज परिभाषा है। लेकिन मैट्रिक्स के लिए "सबसे अधिक इस्तेमाल किया" या "डिफ़ॉल्ट" मानक परिभाषा वर्णक्रमीय मानदंड क्यों नहीं है , लेकिन फ्रोबेनियस मानदंड (जो वैक्टर के लिए L2 मानदंड के समान है) नहीं? क्या पुनरावृत्त …

1
मैट्रिक्स में एक नई पंक्ति जोड़ने के बाद SVD अपघटन को अद्यतन करना
मान लीजिए कि मैं एक घने मैट्रिक्स है के SVD अपघटन के साथ, आकारमें मैं SVD गणना कर सकते हैं इस प्रकार है: ।AA \textbf{A}m×nm×nm \times nA=USV⊤.A=USV⊤.\mathbf{A}=\mathbf{USV}^\top.Rsvd(A) यदि एक नई -th पंक्ति को जोड़ा जाता है , तो क्या कोई पुराने के आधार पर नए SVD अपघटन की गणना कर …

2
सबसे अधिक
जैसा कि इस प्रश्न में कहा गया है , कोविरेंस मैट्रिक्स की अधिकतम रैंक n−1n−1n-1 जहां nnn नमूना आकार है और इसलिए यदि covariance मैट्रिक्स का आयाम नमूना आकार के बराबर है, तो यह विलक्षण होगा। मुझे समझ नहीं आ रहा है कि हम कोविरेन्स मैट्रिक्स की अधिकतम रैंक n …

1
एक पीसीए द्विध्रुवीय में तीर का क्या मतलब है?
निम्नलिखित पीसीए biplot पर विचार करें: library(mvtnorm) set.seed(1) x <- rmvnorm(2000, rep(0, 6), diag(c(5, rep(1,5)))) x <- scale(x, center=T, scale=F) pc <- princomp(x) biplot(pc) वहाँ लाल तीरों का एक गुच्छा लगाया जाता है, उनका क्या मतलब है? मुझे पता था कि "वर 1" के साथ लेबल किया गया पहला तीर …
14 r  pca  linear-algebra  biplot 

1
निर्विवाद प्रणालियों के लिए न्यूमपी कम से कम वर्गों को कैसे हल करता है?
मान लीजिए कि हमारे पास एक्स का आकार (2, 5) और आकार का y (2,) है यह काम: np.linalg.lstsq(X, y) हम उम्मीद करेंगे कि यह तभी काम करेगा जब X आकार का हो (N, 5) जहां N> = 5 लेकिन क्यों और कैसे? हमें उम्मीद के मुताबिक 5 वज़न वापस …

1
GBM पैकेज बनाम Caret GBM का उपयोग कर
मैं मॉडल ट्यूनिंग का उपयोग कर रहा हूं caret, लेकिन फिर gbmपैकेज का उपयोग करके मॉडल को फिर से चलाना । यह मेरी समझ है कि caretपैकेज का उपयोग होता है gbmऔर आउटपुट समान होना चाहिए। हालाँकि, data(iris)मूल्यांकन के रूप में RMSE और R ^ 2 का उपयोग करके लगभग …

2
क्या उम्मीद का मतलब वही है?
मैं अपने विश्वविद्यालय में एमएल कर रहा हूं, और प्रोफेसर ने एक्सपेक्टेशन (ई) शब्द का उल्लेख किया, जबकि वह हमें गॉसियन प्रक्रियाओं पर कुछ बातें समझाने की कोशिश कर रहे थे। लेकिन जिस तरह से उन्होंने इसे समझाया, मैं समझ गया कि ई माध्य μ के समान है। क्या मैंने …

2
वृद्धिशील गाऊसी प्रक्रिया प्रतिगमन
मैं एक वृद्धिशील गाऊसी प्रक्रिया प्रतिगमन को एक बिंदु के माध्यम से एक-एक करके डेटा बिंदुओं पर स्लाइडिंग विंडो का उपयोग करके लागू करना चाहता हूं। चलो इनपुट अंतरिक्ष के आयामी स्वरूप को दर्शाते हैं। तो, हर डेटा बिंदु में तत्वों की संख्या ।घddएक्समैंxix_iघdd चलो स्लाइडिंग विंडो का आकार हो।nnn …

4
"यादृच्छिक प्रक्षेपण" सख्ती से एक प्रक्षेपण नहीं बोल रहा है?
रैंडम प्रक्षेपण एल्गोरिथ्म के वर्तमान कार्यान्वयन उन लोगों से मैप करके डेटा के नमूनों की आयामी स्वरूप को कम करने के लिए एक का उपयोग कर प्रक्षेपण मैट्रिक्स जिसकी प्रविष्टियों से उदाहरण के लिए एक उपयुक्त वितरण (से आईआईडी कर रहे हैं ):आरघRd\mathbb R^dआरकRk\mathbb R^kघ× केd×kd\times kआरRRएन( 0 , 1 …

1
साधारण कम से कम वर्गों में डबल बार और 2 का अर्थ क्या है?
मैंने यहां सामान्य से कम वर्गों के लिए इस संकेतन को देखा । मिनटw∥ एक्सडब्ल्यू - वाई∥22minw‖Xw−y‖22 \min_w \left\| Xw - y \right\|^2_2 मैंने कभी भी डबल बार और 2 को नीचे नहीं देखा है। इन प्रतीकों का क्या मतलब है? क्या उनके लिए विशिष्ट शब्दावली है?

1
कैसे पीसीए eigenvectors नहीं हैं कि वैक्टर के "eigenvalues" (समझाया विचरण का प्रतिशत) पाने के लिए?
मैं समझना चाहता हूं कि कैसे मैं डेटा सेट के विचरण का प्रतिशत प्राप्त कर सकता हूं, पीसीए द्वारा प्रदान किए गए समन्वय स्थान में नहीं, बल्कि (घुमाए हुए) वैक्टरों के थोड़ा अलग सेट के खिलाफ। set.seed(1234) xx <- rnorm(1000) yy <- xx * 0.5 + rnorm(1000, sd = 0.6) …

2
सबसे छोटा सहसंयोजक मैट्रिक्स खोजने के लिए उपयुक्त उपाय
पाठ्यपुस्तक में मैं पढ़ रहा हूं कि वे दो कोविरियस मैट्रिसेस की तुलना करने के लिए सकारात्मक निश्चितता (अर्ध-सकारात्मक निश्चितता) का उपयोग करते हैं। यह विचार कि यदि pd है तो से छोटा है । लेकिन मैं इस रिश्ते का अंतर्ज्ञान पाने के लिए संघर्ष कर रहा हूं?ए - बीA−BA-BबीBBएAA …

1
प्रमुख घटक स्कोर असंबंधित क्यों हैं?
Supose मीन-केंद्रित डेटा का एक मैट्रिक्स है। मैट्रिक्स है , है , अलग अभिलक्षणिक मान तथा अभिलक्षणिक सदिशAA\mathbf AS=cov(A)S=cov(A)\mathbf S=\text{cov}(\mathbf A)m×mm×mm\times mmmms1s1\mathbf s_1, s2s2\mathbf s_2 ... smsm\mathbf s_m, जो ऑर्थोगोनल हैं। iii-तथा प्रमुख घटक (कुछ लोग उन्हें "स्कोर" कहते हैं) वेक्टर है zi=Asizi=Asi\mathbf z_i = \mathbf A\mathbf s_i। दूसरे शब्दों …

1
रेखीय प्रतिगमन श्रेणीगत चर "छिपा हुआ" मान
यह सिर्फ एक उदाहरण है कि मैं कई बार आया हूं, इसलिए मेरे पास कोई नमूना डेटा नहीं है। R में एक रैखिक प्रतिगमन मॉडल चलाना: a.lm = lm(Y ~ x1 + x2) x1एक सतत चर है। x2श्रेणीबद्ध है और इसके तीन मान हैं "उदा", "मध्यम" और "उच्च"। हालाँकि R …
10 r  regression  categorical-data  regression-coefficients  categorical-encoding  machine-learning  random-forest  anova  spss  r  self-study  bootstrap  monte-carlo  r  multiple-regression  partitioning  neural-networks  normalization  machine-learning  svm  kernel-trick  self-study  survival  cox-model  repeated-measures  survey  likert  correlation  variance  sampling  meta-analysis  anova  independence  sample  assumptions  bayesian  covariance  r  regression  time-series  mathematical-statistics  graphical-model  machine-learning  linear-model  kernel-trick  linear-algebra  self-study  moments  function  correlation  spss  probability  confidence-interval  sampling  mean  population  r  generalized-linear-model  prediction  offset  data-visualization  clustering  sas  cart  binning  sas  logistic  causality  regression  self-study  standard-error  r  distributions  r  regression  time-series  multiple-regression  python  chi-squared  independence  sample  clustering  data-mining  rapidminer  probability  stochastic-processes  clustering  binary-data  dimensionality-reduction  svd  correspondence-analysis  data-visualization  excel  c#  hypothesis-testing  econometrics  survey  rating  composite  regression  least-squares  mcmc  markov-process  kullback-leibler  convergence  predictive-models  r  regression  anova  confidence-interval  survival  cox-model  hazard  normal-distribution  autoregressive  mixed-model  r  mixed-model  sas  hypothesis-testing  mediation  interaction 

2
एक रेखीय परिवर्तन के बाद कोसाइन समानता कैसे बदलती है?
क्या इसके बीच गणितीय संबंध है: cosine समानता सिम(ए,बी)sim(A,B)\operatorname{sim}(A, B) दो वैक्टर के एAA तथा बीBB, तथा cosine समानता सिम(मए,मबी)sim(MA,MB)\operatorname{sim}(MA, MB) का एAAऔर , एक समान मैट्रिक्स माध्यम से गैर-समान रूप से बढ़ाया गया ? यहां एक दिया गया विकर्ण मैट्रिक्स है जो विकर्ण पर असमान तत्वों के साथ है।बीBBमMMमMM …

हमारी साइट का प्रयोग करके, आप स्वीकार करते हैं कि आपने हमारी Cookie Policy और निजता नीति को पढ़ और समझा लिया है।
Licensed under cc by-sa 3.0 with attribution required.