self-study पर टैग किए गए जवाब

कक्षा या स्व-अध्ययन के लिए उपयोग की जाने वाली पाठ्यपुस्तक, पाठ्यक्रम, या परीक्षा से एक नियमित अभ्यास। इस समुदाय की नीति पूर्ण उत्तरों के बजाय ऐसे प्रश्नों के लिए "सहायक संकेत प्रदान करना" है।

1
बताते हैं कि यदि
वर्तमान में इस पर अटक गया है, मुझे पता है कि मुझे शायद द्विपद वितरण के औसत विचलन का उपयोग करना चाहिए लेकिन मैं इसका पता नहीं लगा सकता।

1
कम से कम घातीय वितरण के लिए अधिकतम संभावना अनुमानक
मैं इस समस्या को हल करने के तरीके पर अटका हुआ हूं। तो, हमारे पास लिए यादृच्छिक चर, और दो क्रम हैं । अब, और पैरामीटर और साथ स्वतंत्र घातीय वितरण हैं । हालाँकि, हम और देखने के बजाय और निरीक्षण करते हैं ।XiXiX_iYiYiY_ii=1,...,ni=1,...,ni=1,...,nXXXYYYλλ\lambdaμμ\muXXXYYYZZZWWW Z=min(Xi,Yi)Z=min(Xi,Yi)Z=\min(X_i,Y_i) और W=1W=1W=1 यदि Zi=XiZi=XiZ_i=X_i और …

4
मैं दिखाना चाहता हूँ
चलो संभावना अंतरिक्ष पर एक यादृच्छिक चर हो .show किX:Ω→NX:Ω→NX:\Omega \to \mathbb N(Ω,B,P)(Ω,B,P)(\Omega,\mathcal B,P)E(X)=∑n=1∞P(X≥n).E(X)=∑n=1∞P(X≥n).E(X)=\sum_{n=1}^\infty P(X\ge n). से मेरी परिभाषा समान E(X)E(X)E(X)E(X)=∫ΩXdP.E(X)=∫ΩXdP.E(X)=\int_\Omega X \, dP. धन्यवाद।

1
एक आनुपातिक और द्विपद वितरण के साथ नमूना आकार का निर्धारण
मैं पुस्तक, बायोमेट्री द्वारा सोकल और रोहेल (3e) का उपयोग करके कुछ आंकड़े सीखने की कोशिश कर रहा हूं। यह 5 वें अध्याय में एक अभ्यास है जिसमें संभावना, द्विपद वितरण और पॉइसन वितरण शामिल हैं। मुझे पता है कि इस प्रश्न का उत्तर तैयार करने का एक सूत्र है: …

4
क्या इस मामले में x पर y का प्रतिगमन स्पष्ट रूप से x पर y की तुलना में बेहतर है?
किसी व्यक्ति के रक्त में ग्लूकोज के स्तर को मापने के लिए इस्तेमाल किया जाने वाला एक उपकरण 10 लोगों के यादृच्छिक नमूने पर नजर रखता है। स्तरों को बहुत सटीक प्रयोगशाला प्रक्रिया का उपयोग करके भी मापा जाता है। इंस्ट्रूमेंट माप को x द्वारा निरूपित किया जाता है। प्रयोगशाला …

1
चूना पसंद स्वयंसिद्ध, सशर्त संभाव्यता के बारे में प्रश्न [बंद]
बंद हो गया । इस प्रश्न के विवरण या स्पष्टता की आवश्यकता है । यह वर्तमान में उत्तर स्वीकार नहीं कर रहा है। इस प्रश्न को सुधारना चाहते हैं? विवरण जोड़ें और इस पोस्ट को संपादित करके समस्या को स्पष्ट करें । 2 साल पहले बंद हुआ । मैं लूस …

3
सिक्कों को लहराने के लिए संभाव्यता की गंभीर समस्या
आइए कहते हैं कि मैं एक सिक्के के 10,000 फ़्लिप कर रहा हूं। मैं इस बात की प्रायिकता जानना चाहूंगा कि एक पंक्ति में लगातार 4 या अधिक सिर प्राप्त करने में कितने फ़्लिप होते हैं। यह गिनती निम्नलिखित के रूप में काम करेगी, आप केवल एक ही सिर (4 …

1
बहु-परिवर्तनीय निर्भरता के साथ संयुक्त वितरण से सीमांत वितरण कैसे खोजें?
मेरी पाठ्यपुस्तक में एक समस्या निम्नानुसार है। एक द्वि-आयामी स्टोचैस्टिक निरंतर वेक्टर में निम्न घनत्व फ़ंक्शन होता है: चएक्स, वाई( एक्स , वाई) = { 15 x y20यदि 0 <x <1 और 0 <y <xअन्यथाfX,Y(x,y)={15xy2if 0 < x < 1 and 0 < y < x0otherwise f_{X,Y}(x,y)= \begin{cases} 15xy^2 & …

3
द्विपद और पॉसन यादृच्छिक योगों का योग
अगर हमारे पास दो स्वतंत्र यादृच्छिक चर और , तो का संभाव्यता द्रव्यमान क्या है ?एक्स 2 ~ पी ओ मैं रों ( λ ) एक्स 1 + एक्स 2X1∼Binom(n,p)X1∼Binom(n,p)X_1 \sim \mathrm{Binom}(n,p)X2∼Pois(λ)X2∼Pois(λ)X_2 \sim \mathrm{Pois}(\lambda)X1+X2X1+X2X_1 + X_2 NB यह मेरे लिए होमवर्क नहीं है।

1
सांख्यिकीय परीक्षण सुझाव
मुझे निम्नलिखित पर एक उपयुक्त सांख्यिकीय परीक्षण (संभावना अनुपात परीक्षण, टी-परीक्षण, आदि) खोजने की आवश्यकता है: Let एक यादृच्छिक वेक्टर का एक iid नमूना हो और मान लें कि ~ N \ left [\ bigl (\ start {smallmatrix} \ mu_1 \\ \ muu \ "{smallmatrix} \ n) bigr), \ bigl …

1
अनोवा (और ड्रॉप 1) जीएलएमएम के लिए अलग-अलग उत्तर क्यों प्रदान करते हैं?
मेरे पास फॉर्म का GLMM है: lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) जब मैं उपयोग करता हूं drop1(model, test="Chi"), तो मुझे Anova(model, type="III")कार के पैकेज से उपयोग करने की तुलना में अलग-अलग परिणाम मिलते हैं या summary(model)। ये उत्तरार्द्ध दो ही जवाब …
10 r  anova  glmm  r  mixed-model  bootstrap  sample-size  cross-validation  roc  auc  sampling  stratification  random-allocation  logistic  stata  interpretation  proportion  r  regression  multiple-regression  linear-model  lm  r  cross-validation  cart  rpart  logistic  generalized-linear-model  econometrics  experiment-design  causality  instrumental-variables  random-allocation  predictive-models  data-mining  estimation  contingency-tables  epidemiology  standard-deviation  mean  ancova  psychology  statistical-significance  cross-validation  synthetic-data  poisson-distribution  negative-binomial  bioinformatics  sequence-analysis  distributions  binomial  classification  k-means  distance  unsupervised-learning  euclidean  correlation  chi-squared  spearman-rho  forecasting  excel  exponential-smoothing  binomial  sample-size  r  change-point  wilcoxon-signed-rank  ranks  clustering  matlab  covariance  covariance-matrix  normal-distribution  simulation  random-generation  bivariate  standardization  confounding  z-statistic  forecasting  arima  minitab  poisson-distribution  negative-binomial  poisson-regression  overdispersion  probability  self-study  markov-process  estimation  maximum-likelihood  classification  pca  group-differences  chi-squared  survival  missing-data  contingency-tables  anova  proportion 

1
दो स्वतंत्र वर्दी चर के अंतर का वितरण, 0 पर छोटा किया गया
चलो और में एक ही समान रूप से वितरित होने दो स्वतंत्र यादृच्छिक परिवर्तनीय होना घनत्व के साथएक्सएक्सXYYYयू( 0 , 1 )यू(0,1)U(0,1) च( x ) = 1च(एक्स)=1f(x)=1 यदि (और अन्यत्र)।० ≤ x ≤ १0≤एक्स≤10≤x≤1000 चलो एक असली यादृच्छिक चर द्वारा निर्धारित किए:जेडजेडZ जेड= एक्स- वाईजेड=एक्स-YZ=X-Y यदि (और अन्यत्र)।एक्स> यएक्स>YX>Y000 के …

1
का UMVUE ढूंढें
चलो X1,X2,...,XnX1,X2,...,XnX_1, X_2, . . . , X_n यादृच्छिक होने के लिए पीडीएफ होने चर fX(x∣θ)=θ(1+x)−(1+θ)I(0,∞)(x)fX(x∣θ)=θ(1+x)−(1+θ)I(0,∞)(x)f_X(x\mid\theta) =\theta(1 +x)^{−(1+\theta)}I_{(0,\infty)}(x) कहाँ पे θ>0θ>0\theta >0। का UMVUE दें1θ1θ\frac{1}{\theta} और इसके विचरण की गणना करें मैंने UMVUE के लिए दो ऐसे तरीकों के बारे में सीखा है: क्रामर-राव लोअर बाउंड (CRLB) लेहमैन-शेफ़े थोम मैं …

3
इसका वितरण
एक नियमित अभ्यास के रूप में, मैं इसके वितरण को खोजने की कोशिश कर रहा हूं X2+Y2−−−−−−−√X2+Y2\sqrt{X^2+Y^2} कहाँ पे XXX तथा YYY स्वतंत्र हैं U(0,1)U(0,1) U(0,1) यादृच्छिक चर। का संयुक्त घनत्व (X,Y)(X,Y)(X,Y) है fX,Y(x,y)=10<x,y<1fX,Y(x,y)=10<x,y<1f_{X,Y}(x,y)=\mathbf 1_{0\cos^{-1}\left(\frac{1}{z}\right), जैसा क्योंकिθक्योंकि⁡θ\cos\theta पर घट रहा है θ ∈ [ 0 ,π2]θ∈[0,π2]\theta\in\left[0,\frac{\pi}{2}\right]; तथाzपापθ < १⟹θ <पाप- …

1
शब्द 2vec में क्रॉस एन्ट्रापी लॉस की व्युत्पत्ति
मैं cs224d ऑनलाइन स्टैनफोर्ड क्लास कोर्स सामग्री के पहले समस्या सेट के माध्यम से अपने तरीके से काम करने की कोशिश कर रहा हूं और मुझे समस्या 3 ए के साथ कुछ समस्याएं आ रही हैं: सॉफ्टमैक्स प्रेडिक्शन फ़ंक्शन और क्रॉस एन्ट्रॉपी लॉस फंक्शन के साथ स्किप ग्राम 2 वर्ड …

हमारी साइट का प्रयोग करके, आप स्वीकार करते हैं कि आपने हमारी Cookie Policy और निजता नीति को पढ़ और समझा लिया है।
Licensed under cc by-sa 3.0 with attribution required.