svd पर टैग किए गए जवाब

एक मैट्रिक्स का विलक्षण मूल्य अपघटन (SVD) द्वारा दिया गया है, जहां और ऑर्थोगोनल मेट्रिसेस हैं और एक विकर्ण मैट्रिक्स है। =यूएसवीयूवीएस

3
एक बहुभिन्नरूपी सामान्य वितरण से नमूने खींचने के लिए कोलेस्की बनाम ईगेंडेकोम्पोजिशन
मैं एक नमूना आकर्षित करना चाहूंगा । विकिपीडिया या तो एक का उपयोग कर पता चलता है Cholesky या Eigendecomposition , यानी या x∼N(0,Σ)x∼N(0,Σ)\mathbf{x} \sim N\left(\mathbf{0}, \mathbf{\Sigma} \right)Σ=D1DT1Σ=D1D1T \mathbf{\Sigma} = \mathbf{D}_1\mathbf{D}_1^T Σ=QΛQTΣ=QΛQT \mathbf{\Sigma} = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^T और इसलिए नमूना के माध्यम से तैयार किया जा सकता है: या जहां x=D1vx=D1v \mathbf{x} …

2
हम क्लस्टरिंग के साथ आयामी कमी को कब जोड़ते हैं?
मैं दस्तावेज़-स्तरीय क्लस्टरिंग करने की कोशिश कर रहा हूं। मैंने टर्म-डॉक्यूमेंट फ़्रीक्वेंसी मैट्रिक्स का निर्माण किया है और मैं k- साधनों का उपयोग करके इन उच्च आयामी वैक्टरों को क्लस्टर करने का प्रयास कर रहा हूं। सीधे क्लस्ट करने के बजाय, मैंने जो भी किया, वह पहले यू, एस, वीटी …

1
एक समय श्रृंखला के एक आसन्न मैट्रिक्स के Eigenfunctions?
एक साधारण समय श्रृंखला पर विचार करें: > tp <- seq_len(10) > tp [1] 1 2 3 4 5 6 7 8 9 10 हम इस समय श्रृंखला के लिए एक आसन्न मैट्रिक्स की गणना कर सकते हैं जो नमूनों के बीच अस्थायी लिंक का प्रतिनिधित्व करते हैं। इस मैट्रिक्स …

1
क्या जीएसवीडी सभी रैखिक बहुभिन्नरूपी तकनीकों को लागू करता है?
मैं सामान्यीकृत SVD के बारे में Hervé Abdi के लेख पर आया था । लेखक ने उल्लेख किया: सामान्यीकृत एसवीडी (जीएसवीडी) एक आयताकार मैट्रिक्स को विघटित करता है और पंक्तियों और मैट्रिक्स के स्तंभों पर लगाए गए अवरोधों को ध्यान में रखता है। GSVD एक निचली श्रेणी के मैट्रिक्स द्वारा …

3
अव्यक्त अर्थ विश्लेषण (एलएसए), अव्यक्त अर्थ इंडेक्सिंग (एलएसआई), और एकवचन मूल्य अपघटन (एसवीडी) के बीच अंतर क्या हैं?
इन शब्दों को एक साथ बहुत फेंक दिया जाता है, लेकिन मैं यह जानना चाहूंगा कि आप क्या सोचते हैं कि अंतर क्या है, यदि कोई हो। धन्यवाद
15 pca  text-mining  svd 

3
एसवीडी की गणना के लिए कौन से तेज़ एल्गोरिदम मौजूद हैं?
संभवत: यहां विषय बंद है, लेकिन पहले से ही कई ( एक , दो ) संबंधित प्रश्न मौजूद हैं। साहित्य में घूमना (या ट्रंकेटेड एसवीडी एल्गोरिदम के लिए एक Google खोज) बहुत सारे पेपर को बदल देता है जो विभिन्न तरीकों से काटे गए एसवीडी का उपयोग करते हैं, और …

2
एक यादृच्छिक मैट्रिक्स के लिए, एक SVD को कुछ भी स्पष्ट नहीं करना चाहिए? मैं क्या गलत कर रहा हूं?
अगर मैं पूरी तरह से यादृच्छिक डेटा से बना 2-डी मैट्रिक्स का निर्माण करता हूं, तो मैं पीसीए और एसवीडी घटकों को अनिवार्य रूप से कुछ भी नहीं समझाने की उम्मीद करूंगा। इसके बजाय, ऐसा लगता है कि पहला SVD कॉलम 75% डेटा की व्याख्या करता प्रतीत होता है। यह …
13 r  pca  svd 

1
अलग-अलग परिणाम देने वाले विरल डेटा के आधार पर एक सहसंयोजक मैट्रिक्स के eigen और svd डिकम्पोज़िशन क्यों होते हैं?
मैं एक विरल / गैपी डेटा सेट के आधार पर एक सहसंयोजक मैट्रिक्स को विघटित करने की कोशिश कर रहा हूं। मैं देख रहा हूँ कि लैम्ब्डा (समझाया गया विचरण) का योग, जैसा कि गणना svdकी जा रही है, तेजी से गप्पी डेटा के साथ प्रवर्धित किया जा रहा है। …
12 r  svd  eigenvalues 

3
लापता मूल्यों के साथ एक मैट्रिक्स का एसवीडी
मान लीजिए कि मेरे पास एक नेटफ्लिक्स-शैली की सिफारिश की मैट्रिक्स है, और मैं एक मॉडल का निर्माण करना चाहता हूं जो किसी दिए गए उपयोगकर्ता के लिए संभावित भविष्य की मूवी रेटिंग की भविष्यवाणी करता है। साइमन फंक के दृष्टिकोण का उपयोग करते हुए, एक पूर्ण मैट्रिक्स और आइटम-बाय-आइटम …

1
PCA और TruncatedSVD के scikit-learn कार्यान्वयन के बीच अंतर
मैं बीजगणितीय / सटीक स्तर पर प्रधान घटक विश्लेषण और एकवचन मूल्य अपघटन के बीच के संबंध को समझता हूं। मेरा प्रश्न स्कोर-लर्न कार्यान्वयन के बारे में है । प्रलेखन कहता है: " [ट्रंचकेटेडएसवीडी] पीसीए के समान है, लेकिन एक कोवरियन मैट्रिक्स के बजाय सीधे नमूना वैक्टर पर संचालित होता …
12 pca  scikit-learn  svd  scipy 

1
अजगर में एक डरावना साजिश कैसे आकर्षित करें? [बन्द है]
बन्द है। यह सवाल ऑफ टॉपिक है । यह वर्तमान में उत्तर स्वीकार नहीं कर रहा है। इस प्रश्न को सुधारना चाहते हैं? प्रश्न को अपडेट करें ताकि यह क्रॉस मान्य के लिए विषय पर हो । पिछले साल बंद हुआ । मैं एक मैट्रिक्स पर विलक्षण वेक्टर अपघटन का …

1
सहयोगी फ़िल्टरिंग / सिफ़ारिश प्रणाली के लिए गैर-नकारात्मकता क्यों महत्वपूर्ण है?
सभी आधुनिक सिफारिशकर्ता प्रणालियों में जो मैंने देखा है कि मैट्रिक्स फैक्टराइजेशन पर भरोसा करते हैं, उपयोगकर्ता-मूवी मैट्रिक्स पर एक गैर-नकारात्मक मैट्रिक्स फैक्टराइजेशन किया जाता है। मैं समझ सकता हूं कि व्याख्या के लिए गैर-नकारात्मकता क्यों महत्वपूर्ण है और / या यदि आप विरल कारक चाहते हैं। लेकिन अगर आप …

1
SVD से पहले एक शब्द समरूपता मैट्रिक्स पर बिंदुवार पारस्परिक जानकारी लागू करने के पेशेवरों और विपक्ष क्या हैं?
शब्द एम्बेडिंग उत्पन्न करने का एक तरीका इस प्रकार है ( दर्पण ): एक कॉर्पोरा प्राप्त करें, उदाहरण के लिए "मुझे उड़ान का आनंद मिलता है। मुझे एनएलपी पसंद है। मुझे गहरी शिक्षा पसंद है।" इससे शब्द cooccurrence मैट्रिक्स बनाएँ: XXX पर SVD का प्रदर्शन करें , और U के …

3
K- का मतलब है कॉसाइन समानताएँ बनाम यूक्लिडियन दूरी (LSA)
मैं निचले आयामी स्थान में दस्तावेजों के एक कोष का प्रतिनिधित्व करने के लिए अव्यक्त अर्थ विश्लेषण का उपयोग कर रहा हूं। मैं k- साधनों का उपयोग करके इन दस्तावेजों को दो समूहों में बांटना चाहता हूं। कई साल पहले, मैंने पायथन के गेंसिम का उपयोग करके और अपने स्वयं …

1
रेखीय प्रतिगमन श्रेणीगत चर "छिपा हुआ" मान
यह सिर्फ एक उदाहरण है कि मैं कई बार आया हूं, इसलिए मेरे पास कोई नमूना डेटा नहीं है। R में एक रैखिक प्रतिगमन मॉडल चलाना: a.lm = lm(Y ~ x1 + x2) x1एक सतत चर है। x2श्रेणीबद्ध है और इसके तीन मान हैं "उदा", "मध्यम" और "उच्च"। हालाँकि R …
10 r  regression  categorical-data  regression-coefficients  categorical-encoding  machine-learning  random-forest  anova  spss  r  self-study  bootstrap  monte-carlo  r  multiple-regression  partitioning  neural-networks  normalization  machine-learning  svm  kernel-trick  self-study  survival  cox-model  repeated-measures  survey  likert  correlation  variance  sampling  meta-analysis  anova  independence  sample  assumptions  bayesian  covariance  r  regression  time-series  mathematical-statistics  graphical-model  machine-learning  linear-model  kernel-trick  linear-algebra  self-study  moments  function  correlation  spss  probability  confidence-interval  sampling  mean  population  r  generalized-linear-model  prediction  offset  data-visualization  clustering  sas  cart  binning  sas  logistic  causality  regression  self-study  standard-error  r  distributions  r  regression  time-series  multiple-regression  python  chi-squared  independence  sample  clustering  data-mining  rapidminer  probability  stochastic-processes  clustering  binary-data  dimensionality-reduction  svd  correspondence-analysis  data-visualization  excel  c#  hypothesis-testing  econometrics  survey  rating  composite  regression  least-squares  mcmc  markov-process  kullback-leibler  convergence  predictive-models  r  regression  anova  confidence-interval  survival  cox-model  hazard  normal-distribution  autoregressive  mixed-model  r  mixed-model  sas  hypothesis-testing  mediation  interaction 

हमारी साइट का प्रयोग करके, आप स्वीकार करते हैं कि आपने हमारी Cookie Policy और निजता नीति को पढ़ और समझा लिया है।
Licensed under cc by-sa 3.0 with attribution required.