2
दो स्वतंत्र वर्दी यादृच्छिक चर के एक उत्पाद का पीडीएफ
चलो ~ और ~ दी वितरण के साथ दो स्वतंत्र यादृच्छिक चर हो। का वितरण क्या है ?XXXU(0,2)U(0,2)U(0,2)YYYU(−10,10)U(−10,10)U(-10,10)V=XYV=XYV=XY मैंने यह जानकर, समझाने की कोशिश की है h(v)=∫y=+∞y=−∞1yfY(y)fX(vy)dyh(v)=∫y=−∞y=+∞1yfY(y)fX(vy)dyh(v) = \int_{y=-\infty}^{y=+\infty}\frac{1}{y}f_Y(y) f_X\left (\frac{v}{y} \right ) dy हम यह भी जानते हैं कि , fY(y)=120fY(y)=120f_Y(y) = \frac{1}{20} h(v)=120∫y=10y=−101y⋅12dyh(v)=120∫y=−10y=101y⋅12dyh(v)= \frac{1}{20} \int_{y=-10}^{y=10} \frac{1}{y}\cdot \frac{1}{2}dy h(v)=140∫y=10y=−101ydyh(v)=140∫y=−10y=101ydyh(v)=\frac{1}{40}\int_{y=-10}^{y=10} …