machine-learning पर टैग किए गए जवाब

मशीन लर्निंग एल्गोरिदम प्रशिक्षण डेटा का एक मॉडल बनाते हैं। "मशीन लर्निंग" शब्द अस्पष्ट रूप से परिभाषित है; इसमें सांख्यिकीय अधिगम, सुदृढीकरण अधिगम, अप्राप्य अधिगम, इत्यादि को भी शामिल किया जाता है।

11
लीनियर रिग्रेशन को "मशीन लर्निंग" कब कहा जाना चाहिए?
हाल ही में एक बोलचाल में, स्पीकर के सार ने दावा किया कि वे मशीन लर्निंग का उपयोग कर रहे थे। बातचीत के दौरान, मशीन लर्निंग से जुड़ी एकमात्र बात यह थी कि वे अपने डेटा पर रैखिक प्रतिगमन करते हैं। 5 डी पैरामीटर स्पेस में सर्वश्रेष्ठ-फिट गुणांक की गणना …

5
K- साधन और K- निकटतम पड़ोसियों के बीच मुख्य अंतर क्या हैं?
मुझे पता है कि k- साधन अनसुना है और क्लस्टरिंग आदि के लिए उपयोग किया जाता है और k-NN की देखरेख की जाती है। लेकिन मैं दोनों के बीच ठोस अंतर जानना चाहता था?

7
बाय-वन-आउट बनाम के-गुना क्रॉस सत्यापन में पूर्वाग्रह और विचरण
मॉडल भिन्नता और पूर्वाग्रह के संदर्भ में विभिन्न क्रॉस-वैलिडेशन विधियों की तुलना कैसे करें ? मेरा प्रश्न आंशिक रूप से इस सूत्र से प्रेरित है: में सिलवटों का इष्टतम संख्या गुना पार सत्यापन: छोड़-एक-बाहर सीवी हमेशा सबसे अच्छा विकल्प है? कKK। वहां उत्तर बताता है कि लीव-वन-आउट क्रॉस-मान्यता के साथ …

2
तन सक्रियण कार्य बनाम सिग्माइड सक्रियण कार्य
तन सक्रियण क्रिया है: tanh(x)=2⋅σ(2x)−1tanh(x)=2⋅σ(2x)−1tanh \left( x \right) = 2 \cdot \sigma \left( 2 x \right) - 1 कहाँ , अवग्रह समारोह, के रूप में परिभाषित किया गया है: σ ( x ) = ई एक्सσ(x)σ(x)\sigma(x) ।σ(x)=ex1+exσ(x)=ex1+ex\sigma(x) = \frac{e^x}{1 + e^x} प्रशन: क्या यह वास्तव में उन दो सक्रियण कार्यों …

5
"बंद-फ़ॉर्म समाधान" का क्या अर्थ है?
मैं काफी बार "क्लोज-फॉर्म सॉल्यूशन" शब्द पर आया हूं। बंद-रूप समाधान का क्या अर्थ है? यदि कोई समस्या के लिए एक क्लोज-फॉर्म समाधान मौजूद है, तो यह कैसे निर्धारित किया जाता है? ऑनलाइन खोज करने पर, मुझे कुछ जानकारी मिली, लेकिन एक सांख्यिकीय या संभाव्य मॉडल / समाधान विकसित करने …

8
उद्देश्य फ़ंक्शन, लागत फ़ंक्शन, हानि फ़ंक्शन: क्या वे एक ही चीज़ हैं?
मशीन लर्निंग में लोग ऑब्जेक्टिव फंक्शन, कॉस्ट फंक्शन, लॉस फंक्शन के बारे में बात करते हैं। क्या वे एक ही चीज़ के अलग-अलग नाम हैं? उनका उपयोग कब करें? यदि वे हमेशा एक ही चीज़ का संदर्भ नहीं देते हैं, तो अंतर क्या हैं?

5
ऑफ-पॉलिसी और ऑन-पॉलिसी सीखने के बीच अंतर क्या है?
आर्टिफिशियल इंटेलिजेंस वेबसाइट ऑफ-पॉलिसी और ऑन-पॉलिसी लर्निंग को निम्नानुसार परिभाषित करती है: "एक ऑफ-पॉलिसी शिक्षार्थी एजेंट के कार्यों से स्वतंत्र रूप से इष्टतम नीति का मूल्य सीखता है। क्यू-शिक्षा एक ऑफ-पॉलिसी शिक्षार्थी है। एक ऑन-पॉलिसी शिक्षार्थी अन्वेषण चरणों सहित एजेंट द्वारा की जा रही नीति का मूल्य सीखता है। । …

3
एक उदाहरण: बाइनरी परिणाम के लिए ग्लासो का उपयोग करते हुए LASSO प्रतिगमन
मैं LASSO रिग्रेशन के glmnetसाथ उपयोग करने से वंचित होना शुरू कर रहा हूं, जहां मेरी रुचि के परिणाम द्विगुणित हैं । मैंने नीचे एक छोटा सा नकली डाटा फ्रेम बनाया है: age <- c(4, 8, 7, 12, 6, 9, 10, 14, 7) gender <- c(1, 0, 1, 1, 1, …
77 r  self-study  lasso  regression  interpretation  anova  statistical-significance  survey  conditional-probability  independence  naive-bayes  graphical-model  r  time-series  forecasting  arima  r  forecasting  exponential-smoothing  bootstrap  outliers  r  regression  poisson-distribution  zero-inflation  genetic-algorithms  machine-learning  feature-selection  cart  categorical-data  interpretation  descriptive-statistics  variance  multivariate-analysis  covariance-matrix  r  data-visualization  generalized-linear-model  binomial  proportion  pca  matlab  svd  time-series  correlation  spss  arima  chi-squared  curve-fitting  text-mining  zipf  probability  categorical-data  distance  group-differences  bhattacharyya  regression  variance  mean  data-visualization  variance  clustering  r  standard-error  association-measure  somers-d  normal-distribution  integral  numerical-integration  bayesian  clustering  python  pymc  nonparametric-bayes  machine-learning  svm  kernel-trick  hyperparameter  poisson-distribution  mean  continuous-data  univariate  missing-data  dag  python  likelihood  dirichlet-distribution  r  anova  hypothesis-testing  statistical-significance  p-value  rating  data-imputation  censoring  threshold 

1
सहायता वेक्टर मशीनों को समझने में मेरी मदद करें
मैं एक सपोर्ट वेक्टर मशीनों के उद्देश्य की मूल बातें समझता हूं, जो कई अलग-अलग वर्गों में सेट किए गए इनपुट को वर्गीकृत करने के संदर्भ में है, लेकिन जो मुझे समझ में नहीं आता है वह है कुछ बारीकियों का विवरण। शुरुआत के लिए, मैं स्लैक वेरिएबल्स के उपयोग …

6
मशीन लर्निंग में क्रॉस-सत्यापन करते समय "अंतिम" मॉडल के लिए फ़ीचर चयन
मैं फीचर चयन और मशीन सीखने के बारे में थोड़ा भ्रमित हो रहा हूं और मैं सोच रहा था कि क्या आप मेरी मदद कर सकते हैं। मेरे पास एक माइक्रोएरे डेटासेट है जिसे दो समूहों में वर्गीकृत किया गया है और इसमें कई सुविधाएँ हैं। मेरा उद्देश्य हस्ताक्षर में …

3
लॉजिस्टिक रिग्रेशन को लॉजिस्टिक क्लासिफिकेशन क्यों नहीं कहा जाता है?
चूंकि लॉजिस्टिक रिग्रेशन एक सांख्यिकीय वर्गीकरण मॉडल है जो श्रेणीबद्ध निर्भर चर के साथ काम करता है, इसे लॉजिस्टिक वर्गीकरण क्यों नहीं कहा जाता है ? क्या "प्रतिगमन" नाम को निरंतर आश्रित चर से निपटने वाले मॉडल के लिए आरक्षित नहीं किया जाना चाहिए?

3
एक प्रकाशन में एक यादृच्छिक जंगल प्रस्तुत करने का सबसे अच्छा तरीका?
मैं विभिन्न सुविधाओं के साथ एक माइक्रोएरे अध्ययन में दो समूहों के एक मजबूत वर्गीकरण के रूप में यादृच्छिक वन एल्गोरिथ्म का उपयोग कर रहा हूं। यादृच्छिक वन को प्रस्तुत करने का सबसे अच्छा तरीका क्या है ताकि एक कागज में इसे प्रतिलिपि प्रस्तुत करने योग्य बनाने के लिए पर्याप्त …

6
रेखीय प्रतिगमन के लिए ढाल वंश का उपयोग क्यों करें, जब एक बंद-प्रपत्र गणित समाधान उपलब्ध हो?
मैं मशीन लर्निंग पाठ्यक्रम ऑनलाइन ले रहा हूं और परिकल्पना में इष्टतम मूल्यों की गणना के लिए ग्रेडिएंट डिसेंट के बारे में सीखा है। h(x) = B0 + B1X अगर हम आसानी से नीचे दिए गए फॉर्मूला के साथ मूल्यों को पा सकते हैं तो हमें ग्रेडिएंट डिसेंट का उपयोग …

11
पीएचडी के बिना डाटा-माइनिंग में नौकरी करना
मैं कुछ समय के लिए डेटा-माइनिंग और मशीन-लर्निंग में बहुत रुचि रखता हूं, आंशिक रूप से क्योंकि मैंने स्कूल में उस क्षेत्र में पढ़ाई की है, लेकिन यह भी क्योंकि मैं वास्तव में उन समस्याओं को हल करने के लिए अधिक उत्साहित हूं, जिन्हें सिर्फ प्रोग्रामिंग की तुलना में थोड़ा …

4
तंत्रिका नेटवर्क क्यों गहरे होते जा रहे हैं, लेकिन व्यापक नहीं हैं?
हाल के वर्षों में, convolutional तंत्रिका नेटवर्क (या सामान्य रूप में शायद गहरी तंत्रिका नेटवर्क) राज्य के अत्याधुनिक नेटवर्क 7 परतों (से जाने के साथ, गहरे और गहरे हो गए हैं AlexNet 1000 परतों (करने के लिए) अवशिष्ट जाल) 4 की अंतरिक्ष में वर्षों। एक गहरे नेटवर्क से प्रदर्शन को …

हमारी साइट का प्रयोग करके, आप स्वीकार करते हैं कि आपने हमारी Cookie Policy और निजता नीति को पढ़ और समझा लिया है।
Licensed under cc by-sa 3.0 with attribution required.