एक ARMA (2,1) प्रक्रिया के Autocovariance - के लिए विश्लेषणात्मक मॉडल की व्युत्पत्ति
मैं autocovariance समारोह के लिए विश्लेषणात्मक भाव प्राप्त करने के लिए की जरूरत है एक ARMA (2,1) की प्रक्रिया के द्वारा सूचित किया जाता:γ(k)γ(k)\gamma\left(k\right) yt=ϕ1yt−1+ϕ2yt−2+θ1ϵt−1+ϵtyt=ϕ1yt−1+ϕ2yt−2+θ1ϵt−1+ϵty_t=\phi_1y_{t-1}+\phi_2y_{t-2}+\theta_1\epsilon_{t-1}+\epsilon_t तो, मुझे पता है कि: γ(k)=E[yt,yt−k]γ(k)=E[yt,yt−k]\gamma\left(k\right) = \mathrm{E}\left[y_t,y_{t-k}\right] इसलिए मैं लिख सकता हूं: γ(k)=ϕ1E[yt−1yt−k]+ϕ2E[yt−2yt−k]+θ1E[ϵt−1yt−k]+E[ϵtyt−k]γ(k)=ϕ1E[yt−1yt−k]+ϕ2E[yt−2yt−k]+θ1E[ϵt−1yt−k]+E[ϵtyt−k]\gamma\left(k\right) = \phi_1 \mathrm{E}\left[y_{t-1}y_{t-k}\right]+\phi_2 \mathrm{E}\left[y_{t-2}y_{t-k}\right]+\theta_1 \mathrm{E}\left[\epsilon_{t-1}y_{t-k}\right]+\mathrm{E}\left[\epsilon_{t}y_{t-k}\right] फिर, स्वतःभरण समारोह के विश्लेषणात्मक संस्करण …