"जब वास्तविक त्रुटि वितरण मान्य त्रुटि वितरण से मेल नहीं खाता है, तो अनुमानक कार्य क्या करता है?"
सिद्धांत रूप में QMPLE "काम" नहीं करता है , "अच्छा" अनुमानक होने के अर्थ में। क्यूएमएलई के आस-पास विकसित सिद्धांत उपयोगी है क्योंकि इससे प्रक्षेपास्त्र परीक्षण हुआ है।
QMLE निश्चित रूप से पैरामीटर वेक्टर का लगातार अनुमान लगाता है जो सही वितरण और निर्दिष्ट निर्दिष्ट के बीच कुल्बैक-लीबेर डाइवर्जेंस को कम करता है। यह अच्छा लगता है, लेकिन इस दूरी को कम करने का मतलब यह नहीं है कि कम से कम दूरी भारी नहीं होगी।
फिर भी, हम पढ़ते हैं कि कई परिस्थितियां हैं कि क्यूएमएलई सच्चे पैरामीटर वेक्टर के लिए एक सुसंगत अनुमानक है । इसे केस-बाय-केस का आकलन किया जाना है, लेकिन मुझे एक सामान्य स्थिति देनी चाहिए, जिससे पता चलता है कि QMLE में कुछ भी अंतर्निहित नहीं है जो इसे सच्चे वेक्टर के लिए सुसंगत बनाता है ...
... बल्कि यह तथ्य है कि यह एक अन्य अनुमानक के साथ मेल खाता है जो हमेशा सुसंगत है (एर्गोडिक-स्थिर नमूना धारणा को बनाए रखते हुए): पुराने जमाने का, मोमेंट्स का अनुमान लगाने वाला।
दूसरे शब्दों में, जब वितरण के बारे में संदेह है, तो विचार करने के लिए एक रणनीति "हमेशा एक वितरण निर्दिष्ट करें जिसके लिए ब्याज के मापदंडों के लिए अधिकतम संभावना आकलन क्षण की विधि के साथ मेल खाता है" : इस तरह से कोई फर्क नहीं पड़ता कि निशान कैसे बंद हो गया आपकी वितरण संबंधी धारणा है, अनुमानक कम से कम सुसंगत होगा।
आप इस रणनीति को हास्यास्पद चरम सीमा तक ले जा सकते हैं: मान लें कि आपके पास यादृच्छिक चर से एक बहुत बड़ा आईड नमूना है, जहां सभी मान सकारात्मक हैं। पर जाएं और मान लें कि यादृच्छिक चर सामान्य रूप से वितरित किया गया है और माध्य और विचरण के लिए अधिकतम संभावना को लागू करता है: आपका QMLE सच्चे मूल्यों के अनुरूप होगा।
बेशक यह सवाल है, क्यों MLE लागू करने का नाटक कर रहा है क्योंकि हम जो कर रहे हैं वह अनिवार्य रूप से निर्भर करता है और मेथड ऑफ मोमेंट्स की ताकत के पीछे छिप रहा है (जो कि एसिम्प्टोटिक सामान्यता की गारंटी भी देता है)?
अन्य अधिक परिष्कृत मामलों में, क्यूएमएलई को ब्याज के मापदंडों के अनुरूप दिखाया जा सकता है यदि हम कह सकते हैं कि हमने सशर्त माध्य फ़ंक्शन को सही ढंग से निर्दिष्ट किया है, लेकिन वितरण नहीं है (उदाहरण के लिए पूलेड पॉइसन क्यूएमएल के लिए मामला है - देखें वोल्ड्रिज) ।