कई स्थितियों के साथ सशर्त संभाव्यता की परिभाषा


21

विशेष रूप से, मैं दो घटनाओं, ए और बी है, और कुछ वितरण मानकों का कहना है कि , और मैं को देखने के लिए करना चाहते हैं पी ( एक | बी , θ )θP(A|B,θ)

तो, सशर्त संभावना के सरल परिभाषा, कुछ घटनाओं ए और बी में दिया जाता है, तो । इसलिए यदि मेरे ऊपर कई स्थितियां हैं, जैसे कि मेरे पास है, तो क्या मैं कह सकता हूं किP(A|B,θ) ? = पी((एक|θ)(बी|θ))P(A|B)=P(AB)P(B) या मैं पूरी तरह गलत तरह से तलाश में हूँ? जब मैं कभी-कभी संभाव्यता से निपटता हूं, तो मैं खुद को बाहर कर देता हूं, मुझे यकीन नहीं है कि ऐसा क्यों है।P(A|B,θ)=?P((A|θ)(B|θ))P(B|θ)


के मिलन क्या है और बी , θ ? AB,θ
एना एसएच

जवाबों:


19

आप थोड़ा ट्रिक कर सकते हैं। चलो । अब आप लिख सकते हैं(Bθ)=C

समस्या केवल एक शर्त के साथ एक सशर्त संभाव्यता को कम करती है: P ( A | C ) = P ( A C )

P(A|B,θ)=P(A|C).
P(A|C)=P(AC)P(C)

(Bθ)C

P(AC)P(C)=P(A(Bθ))P(Bθ)

और यह वह परिणाम है जो आप प्राप्त करना चाहते थे। आइए इसे ठीक उसी रूप में लिखें, जब आपने मूल रूप से प्रश्न पूछा था:

P(A|B,θ)=P(ABθ)P(Bθ)

आपके दूसरे प्रश्न के रूप में, यह क्यों है कि संभावना आपको बाहर निकालती है: यह मनोवैज्ञानिक अनुसंधान के निष्कर्षों में से एक है कि मनुष्य संभाव्य तर्क पर बहुत अच्छा नहीं है; ;-) मेरे लिए एक संदर्भ खोजना मुश्किल था, जिसे मैं आपको इंगित कर सकूं। लेकिन इस संबंध में डैनियल कहमैन का काम निश्चित रूप से बहुत महत्वपूर्ण है।


12

मुझे लगता है कि आप शायद यही चाहते हैं:

P(A|B,θ)=P(AB|θ)P(B|θ)

मैं अक्सर इसे भ्रमित करने वाली सोच पाता हूं कि कैसे संभावनाओं को हेरफेर किया जाए। कई शर्तों के साथ, मुझे इस बारे में सोचना आसान लगता है:

  • P(A|B)θ
  • P(A|B)=P(AB)/P(B)
  • θP(A|B,θ)=P(AB|θ)/P(B|θ)

नहीं होगा P (A | B) = P (B और A) / P (B)। तो क्या ऐसा कुछ सही नहीं होगा? P (A | B, C) = P (C और B और A) / P (C और B)
DashControl

4
@DashControl हाँ, और यदि आप बहुत अधिक अभिव्यक्ति का विस्तार करते हैं, तो आपको ठीक वही परिणाम मिलेगा। वे एक ही बात कर रहे हैं :)
जोश चेन

P (A | B, θ) = (P (A |B | *) * P (θ)) / (P (B (()) * P (θ) = P (A∩B∩θ) / P () B)
o0omycomputero0o

IMHO, यह एक बहुत बुरा तरीका है! आंकड़े . stackexchange.com/a/67382/82135 निश्चित रूप से अधिक कठोर है।
nob
हमारी साइट का प्रयोग करके, आप स्वीकार करते हैं कि आपने हमारी Cookie Policy और निजता नीति को पढ़ और समझा लिया है।
Licensed under cc by-sa 3.0 with attribution required.