कई प्रतिगमन में पूर्वसूचक चरों के बीच r-squared को कैसे विभाजित करें?


16

मैंने अभी एक पेपर पढ़ा है जिसमें लेखकों ने दो भविष्यवक्ताओं के साथ कई प्रतिगमन किए। समग्र आर-स्क्वेर मूल्य 0.65 था। उन्होंने एक तालिका प्रदान की, जिसने दो भविष्यवक्ताओं के बीच r-squared को विभाजित किया। तालिका इस प्रकार दिखी:

            rsquared beta    df pvalue
whole model     0.65   NA  2, 9  0.008
predictor 1     0.38 1.01 1, 10  0.002
predictor 2     0.27 0.65 1, 10  0.030

इस मॉडल में, डेटासेट Rका उपयोग करके भाग लिया गया mtcars, समग्र आर-स्क्वेर्ड मान 0.76 है।

summary(lm(mpg ~ drat + wt, mtcars))

Call:
lm(formula = mpg ~ drat + wt, data = mtcars)

Residuals:
    Min      1Q  Median      3Q     Max 
-5.4159 -2.0452  0.0136  1.7704  6.7466 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   30.290      7.318   4.139 0.000274 ***
drat           1.442      1.459   0.989 0.330854    
wt            -4.783      0.797  -6.001 1.59e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1

Residual standard error: 3.047 on 29 degrees of freedom
Multiple R-squared:  0.7609,    Adjusted R-squared:  0.7444 
F-statistic: 46.14 on 2 and 29 DF,  p-value: 9.761e-10

मैं दो भविष्यवक्ता चर के बीच r-squared मान को कैसे विभाजित कर सकता हूं?


1
यह पोस्ट को विभाजित करने के तरीके के बारे में जानकारी प्रदान करता है । R2
COOLSerdash

8
यह टिप्पणी संक्षेप में और अपर्याप्त रूप से प्रतिनिधित्व कर सकती है, यह देखने की बात है कि यह अक्सर खतरनाक नहीं होने पर निरर्थक साबित होगा। किसी मॉडल की सफलता या असफलता को भविष्यवक्ताओं (और उनके विशेष कार्यात्मक रूपों, बातचीत की शर्तों, आदि) द्वारा टीम के प्रयास के परिणाम के रूप में माना जाता है और इस तरह से आंका जाता है। स्वाभाविक रूप से, हम में से अधिकांश भविष्यवक्ताओं के सापेक्ष महत्व में रुचि रखते हैं और यह बकवास नहीं है, लेकिन इस तरह के अभ्यास पर तकनीकी और दार्शनिक सीमाओं के पूर्ण बयानों के साथ इसे ठीक करने की आवश्यकता है।
निक कॉक्स

जवाबों:


5

आप केवल दो अलग-अलग सहसंबंध प्राप्त कर सकते हैं और उन्हें वर्ग कर सकते हैं या दो अलग-अलग मॉडल चला सकते हैं और R ^ 2 प्राप्त कर सकते हैं। यदि भविष्यवक्ता ऑर्थोगोनल हैं तो वे ही योग करेंगे।


2
'ऑर्थोगोनल' से, क्या आपका मतलब है कि दो भविष्यवक्ता एक-दूसरे से असंबद्ध होना चाहिए?
लुसियानो

3
हां, असंबंधित ... यह एकमात्र तरीका है जो उन्हें कुल योग करता है।
जॉन

13

जॉन के जवाब के अलावा , आप प्रत्येक भविष्यवक्ता के लिए चौकोर अर्ध-आंशिक सहसंबंध प्राप्त करना चाह सकते हैं ।

  • असंबद्ध भविष्यवक्ता : यदि भविष्यवक्ता ऑर्थोगोनल (यानी, असंबद्ध) हैं, तो चुकता अर्ध-आंशिक सहसंबंध स्क्वेयर्ड शून्य-क्रम सहसंबंध के समान होगा।
  • सहसंबंधी भविष्यवक्ता: यदि भविष्यवक्ता सहसंबद्ध हैं, तो चुकता अर्ध-आंशिक सहसंबंध किसी दिए गए भविष्यवक्ता द्वारा बताए गए अद्वितीय विचरण का प्रतिनिधित्व करेगा। इस मामले में, चौकोर अर्ध-आंशिक सहसंबंधों का योग से कम होगा । यह शेष समझाया गया संस्करण एक से अधिक चर द्वारा समझाया गया विचरण का प्रतिनिधित्व करेगा।R2

यदि आप एक आर फ़ंक्शन की तलाश कर रहे हैं spcor()तो ppcorपैकेज में है।

आप कई प्रतिगमन में चर महत्व के मूल्यांकन के व्यापक विषय पर भी विचार करना चाह सकते हैं (उदाहरण के लिए, इस पृष्ठ को रिलेटिव पैकेज के बारे में देखें )।


3

मैंने आपके प्रश्न में टैग जोड़ा है । यहाँ इसके टैग विकी का हिस्सा है :

R2p!p

ग्रोम्पिंग (2007, द अमेरिकन स्टेटिस्टिशियन ) चर महत्व का आकलन करने के संदर्भ में साहित्य को एक अवलोकन और संकेत देता है।


y ~ a + by ~ b + ay ~ ay ~ a + by ~ by ~ a + by ~ b + a2p

R2aabR2y~1y~abR2y~by~a+b

2p2!

2p=q=0p(pq)(pq)qpq=0qqq=1pq(pq)2p
हमारी साइट का प्रयोग करके, आप स्वीकार करते हैं कि आपने हमारी Cookie Policy और निजता नीति को पढ़ और समझा लिया है।
Licensed under cc by-sa 3.0 with attribution required.