मुझे लगता है कि रन टेस्ट एक अच्छा विचार है। मेरे लिए, "विखंडू" में डेटा का विश्लेषण करके, आपका इरादा खिलाड़ी स्थिरता में "हॉट हैंड्स" के लिए एक प्रॉक्सी बनाने या नियंत्रित करने का है। वहाँ इस घटना पर एक बड़ा साहित्य है। गेलमैन द्वारा जुलाई 2015 में अपने ब्लॉग पर सबसे अच्छे पत्रों में से एक पर चर्चा की गई थी। उनकी पोस्ट का शीर्षक था, "हे-लगता है क्या? वास्तव में एक गर्म हाथ है!" ( http://andrewgelman.com/2015/07/09/hey-guess-what-there-really-is-a-hot-hand/ )। गेलमैन की रिपोर्ट पर पिछले साहित्य के अधिकांश खंडों का खंडन है क्योंकि यह गर्म हाथों की घटना के पिछले विश्लेषणों द्वारा की गई त्रुटियों का विवरण देता है। पहले का काम सशर्त संभावनाओं के विपरीत समग्र रूप से केंद्रित था। यह पेपर एक नया अनुक्रमिक संभाव्यता मॉडल प्रस्तुत करता है (कागज के संदर्भ के लिए लिंक देखें)।
संगति का एक अच्छा मीट्रिक जो अंतरों के लिए नियंत्रण करना चाहिए, उदाहरण के लिए, शॉट्स की संख्या, भिन्नता का गुणांक है। सीवी परिवर्तनशीलता का एक आयामहीन, पैमाना अपरिवर्तनीय माप है और माध्य से std विचलन को विभाजित करके गणना की जाती है। इसे हल करने का प्रयास करने वाली समस्या यह है कि एसटीडी विचलन को माप के तहत इकाई के पैमाने में व्यक्त किया जाता है, अर्थात, यह पैमाना नहीं है। इसका मतलब यह है कि उच्च औसत मूल्यों वाले मैट्रिक्स भी कम औसत मूल्यों वाले मैट्रिक्स की तुलना में उच्च एसटीडी विचलन करते हैं। इसलिए, उदाहरण के लिए, उनके औसत मूल्यों में अंतर के कारण, डायस्टोलिक और सिस्टोलिक रक्तचाप में परिवर्तनशीलता के उपाय तुलनात्मक नहीं हैं। सीवी लेने से, उनकी परिवर्तनशीलता तुलनीय हो जाती है। यही बात कई अन्य मेट्रिक्स जैसे स्टॉक की कीमतों के लिए भी है,
इस प्रकार, सीवी की गणना कई मैट्रिक्स और स्केल प्रकारों के लिए की जा सकती है, जिसमें श्रेणीबद्ध जानकारी और नकारात्मक मूल्यों के उपायों को छोड़कर।