संक्षिप्त उत्तर "हां आप कर सकते हैं" - लेकिन आपको "बड़े मॉडल" के अधिकतम संभावना वाले अनुमानों (एमएलई) की तुलना दोनों मॉडलों के लिए फिट किए गए या तो सभी मॉडल में करना चाहिए।
यह आपके प्रश्न का उत्तर देने के लिए संभाव्यता सिद्धांत प्राप्त करने का एक "अर्ध-औपचारिक" तरीका है
उदाहरण में, और वाई 2 एक ही प्रकार के चर (अंश / प्रतिशत) हैं, इसलिए वे तुलनीय हैं। मैं मानूंगा कि आप दोनों को एक ही मॉडल फिट करते हैं। तो हमारे पास दो मॉडल हैं:Y1Y2
एल ओ जी ( पी 1 मैं
M1:Y1i∼Bin(n1i,p1i)
एम2:वाई2मैं~बीमैंn(n2मैं,पी2मैं)एलओजी(पी 2 मैंlog(p1i1−p1i)=α1+β1Xi
M2:Y2i∼Bin(n2i,p2i)
log(p2i1−p2i)=α2+β2Xi
इसलिए आपके पास वह परिकल्पना है जिसका आप आकलन करना चाहते हैं:
H0:β1>β2
और आपके पास कुछ डेटा , और कुछ पूर्व जानकारी (जैसे कि लॉजिस्टिक मॉडल का उपयोग) है। तो आप संभावना की गणना करते हैं:{Y1i,Y2i,Xi}ni=1
P=Pr(H0|{Y1i,Y2i,Xi}ni=1,I)
अब किसी भी प्रतिगमन पैरामीटर के वास्तविक मूल्य पर निर्भर नहीं करता है, इसलिए उन्हें हाशिए पर हटा दिया जाना चाहिए।H0
पी= ∫∞- ∞∫∞- ∞∫∞- ∞∫∞- ∞पीआर ( एच0, α1, α2, β1, β2| { य1 मैं, वाई2 मैं, एक्समैं}nमैं = १, मैं) dα1घα2घβ1घβ2
परिकल्पना केवल एकीकरण की सीमा को सीमित करती है, इसलिए हमारे पास है:
P=∫∞−∞∫∞β2∫∞−∞∫∞−∞Pr(α1,α2,β1,β2|{Y1i,Y2i,Xi}ni=1,I)dα1dα2dβ1dβ2
क्योंकि संभावना डेटा पर सशर्त है, यह प्रत्येक मॉडल के लिए दो अलग-अलग पोस्टेरीयर्स में कारक होगा
Pr(α1,β1|{Y1i,Xi,Y2i}ni=1,I)Pr(α2,β2|{Y2i,Xi,Y1i}ni=1,I)
Now because there is no direct links between Y1i and α2,β2, only indirect links through Xi, which is known, it will drop out of the conditioning in the second posterior. same for Y2i in the first posterior.
From standard logistic regression theory, and assuming uniform prior probabilities, the posterior for the parameters is approximately bi-variate normal with mean equal to the MLEs, and variance equal to the information matrix, denoted by V1 and V2 - which do not depend on the parameters, only the MLEs. so you have straight-forward normal integrals with known variance matrix. αj marginalises out with no contribution (as would any other "common variable") and we are left with the usual result (I can post the details of the derivation if you want, but its pretty "standard" stuff):
P=Φ(β^2,MLE−β^1,MLEV1:β,β+V2:β,β−−−−−−−−−−−√)
Where Φ() is just the standard normal CDF. This is the usual comparison of normal means test. But note that this approach requires the use of the same set of regression variables in each. In the multivariate case with many predictors, if you have different regression variables, the integrals will become effectively equal to the above test, but from the MLEs of the two betas from the "big model" which includes all covariates from both models.