स्थिति
मेरे पास एक आश्रित के साथ एक डेटासेट है और एक स्वतंत्र चर । मैं के साथ एक सतत टुकड़ा रेखीय प्रतिगमन फिट करना चाहते हैं ज्ञात / निश्चित विराम बिंदु पर होने वाली । गोलमाल अनिश्चितता के बिना जाना जाता है, इसलिए मैं उनका अनुमान नहीं लगाना चाहता। फिर मैंने फॉर्म का एक रिग्रेशन (OLS) फिट किया
R
set.seed(123)
x <- c(1:10, 13:22)
y <- numeric(20)
y[1:10] <- 20:11 + rnorm(10, 0, 1.5)
y[11:20] <- seq(11, 15, len=10) + rnorm(10, 0, 2)
मान लेते हैं कि ब्रेकपॉइंट पर होता है :
mod <- lm(y~x+I(pmax(x-9.6, 0)))
summary(mod)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 21.7057 1.1726 18.511 1.06e-12 ***
x -1.1003 0.1788 -6.155 1.06e-05 ***
I(pmax(x - 9.6, 0)) 1.3760 0.2688 5.120 8.54e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
दो खंडों के अवरोधन और ढलान हैं: तथा पहली बार और तथा क्रमशः दूसरे के लिए।
प्रशन
- आसानी से प्रत्येक खंड के अवरोधन और ढलान की गणना कैसे करें? क्या एक गणना में ऐसा करने के लिए मॉडल को फिर से तैयार किया जा सकता है?
- प्रत्येक खंड के प्रत्येक ढलान की मानक त्रुटि की गणना कैसे करें?
- कैसे परीक्षण करें कि क्या दो आसन्न ढलानों में एक ही ढलान है (यानी क्या ब्रेकपॉइंट छोड़ा जा सकता है)?
x
औरI(pmax(x-9.6,0))
, विचरण-सहसंयोजक मैट्रिक्स की आवश्यकता होगी , क्या यह सही है?