नमूना माध्य और एसटीडी का उपयोग करके गामा वितरण मापदंडों का अनुमान लगाना


19

मैं एक गामा वितरण के मापदंडों का अनुमान लगाने की कोशिश कर रहा हूं जो मेरे डेटा नमूने के लिए सबसे उपयुक्त हैं। मैं केवल डेटा नमूने से माध्य , एसटीडी (और इसलिए विचरण ) का उपयोग करना चाहता हूं , वास्तविक मूल्यों का नहीं - क्योंकि ये हमेशा मेरे आवेदन में उपलब्ध नहीं होंगे।

के अनुसार इस दस्तावेज़, निम्नलिखित फार्मूले आकार और पैमाने अनुमान लगाने के लिए लागू किया जा सकता: सूत्रों

मैंने अपने डेटा के लिए यह कोशिश की, हालांकि एक पायथन प्रोग्रामिंग लाइब्रेरी का उपयोग करके वास्तविक डेटा पर एक गामा वितरण को फिट करने की तुलना में परिणाम बहुत अलग हैं।

मैं हाथ में समस्या दिखाने के लिए अपना डेटा / कोड संलग्न करता हूं:

import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import gamma

data = [91.81, 10.02, 27.61, 50.48, 3.34, 26.35, 21.0, 79.27, 31.04, 8.85, 109.2, 15.52, 11.03, 41.09, 10.75, 96.43, 109.52, 33.28, 7.66, 65.44, 52.43, 19.25, 10.97, 586.52, 56.91, 157.18, 434.74, 16.07, 334.43, 6.63, 108.41, 4.45, 42.03, 39.75, 300.17, 4.37, 343.19, 32.04, 42.57, 29.53, 276.75, 15.43, 117.67, 75.47, 292.43, 457.91, 5.49, 17.69, 10.31, 58.91, 76.94, 37.39, 64.46, 187.25, 30.0, 9.94, 83.05, 51.11, 17.68, 81.98, 4.41, 33.24, 20.36, 8.8, 846.0, 154.24, 311.09, 120.72, 65.13, 25.52, 50.9, 14.27, 17.74, 529.82, 35.13, 124.68, 13.21, 88.24, 12.12, 254.32, 22.09, 61.7, 88.08, 18.75, 14.34, 931.67, 19.98, 50.86, 7.71, 5.57, 8.81, 14.49, 26.74, 13.21, 8.92, 26.65, 10.09, 7.74, 21.23, 66.35, 31.81, 36.61, 92.29, 26.18, 20.55, 17.18, 35.44, 6.63, 69.0, 8.81, 19.87, 5.46, 29.81, 122.01, 57.83, 33.04, 9.91, 196.0, 34.26, 34.31, 36.55, 7.74, 6.68, 6.83, 18.83, 6.6, 50.78, 95.65, 53.91, 81.62, 57.96, 26.72, 76.25, 5.48, 4.43, 133.04, 33.37, 45.26, 30.51, 9.98, 11.08, 28.95, 71.25, 70.65, 3.34, 12.28, 111.67, 139.86, 23.34, 30.0, 26.38, 33.51, 1112.64, 25.87, 148.59, 552.79, 11.11, 47.8, 7.8, 9.98, 7.69, 85.46, 3.59, 122.71, 32.09, 82.51, 12.14, 12.57, 8.8, 49.61, 95.41, 26.99, 13.29, 4.57, 7.78, 4.4, 6.66, 12.17, 12.18, 1533.01, 22.95, 15.93, 14.82, 2.2, 12.04, 9.94, 17.64, 6.66, 18.64, 83.66, 142.99, 30.76, 67.57, 9.88, 46.44, 19.5, 22.2, 43.1, 653.67, 9.86, 7.69, 7.74, 27.19, 38.64, 12.32, 182.34, 43.13, 3.28, 14.32, 69.78, 32.2, 17.66, 18.67, 4.4, 9.05, 56.94, 33.32, 13.2, 15.07, 12.73, 3.32, 35.44, 14.35, 66.68, 51.28, 6.86, 75.49, 5.54, 21.0, 24.2, 38.1, 13.31, 7.78, 5.76, 51.86, 11.09, 20.71, 36.74, 21.97, 10.36, 32.04, 96.94, 13.93, 51.84, 6.88, 27.58, 100.56, 20.97, 828.16, 6.63, 32.15, 19.92, 253.23, 25.35, 23.35, 17.6, 43.18, 19.36, 13.7, 3.31, 22.99, 26.58, 4.43, 2.22, 55.46, 22.34, 13.24, 86.18, 181.29, 52.15, 5.52, 21.12, 34.24, 49.78, 14.37, 39.73, 78.22, 26.6, 20.19, 26.57, 105.8, 11.08, 46.47, 52.82, 13.46, 8.0, 7.74, 49.73, 4.4, 5.44, 51.7, 28.64, 8.95, 9.15, 4.46, 21.03, 29.92, 19.89, 4.38, 19.94, 7.77, 23.43, 57.07, 86.5, 12.82, 103.85, 39.63, 8.83, 42.32, 17.02, 14.29, 16.75, 24.4, 27.97, 8.83, 8.91, 24.23, 6.58, 30.97, 150.58, 122.73, 17.69, 37.11, 11.05, 298.23, 25.58, 9.91, 38.85, 17.24, 82.17, 42.11, 3.29, 38.63, 27.55, 18.22, 127.16, 57.66, 34.45, 41.26, 45.91, 9.88, 34.48, 484.33, 58.42, 30.09, 6.69, 254.49, 1313.58, 39.89, 3.31, 7.83, 10.98, 13.21, 67.78, 7.77, 117.72, 20.03, 83.23, 31.28, 38.97, 6.63, 6.63, 36.6, 22.12, 154.57, 112.65, 19.88, 674.18, 83.31, 5.54, 8.81, 11.06, 178.33, 30.47, 1180.39, 79.33, 37.74, 86.3, 16.61, 53.94, 52.78, 20.83, 11.15, 26.68, 86.04, 180.26, 99.62, 11.17, 28.74, 56.85, 15.51, 95.37, 44.09, 6.68, 12.14, 6.72, 19.81, 10.05, 34.26, 69.84, 14.35, 17.72, 8.81, 20.86, 37.69, 24.62, 72.11, 8.83, 7.69, 60.79, 20.02, 9.41, 13.24, 29.8, 43.09, 25.34, 174.34, 161.6, 119.34, 30.08, 54.15, 7.74, 249.29, 9.98, 21.87, 38.92, 98.45, 95.07, 7.74, 4.45, 81.98, 12.18, 28.66, 5.58, 59.94, 22.15, 9.98, 18.86, 6.69, 134.97, 13.29, 4.43, 8.88, 5.74, 25.16, 122.39, 3.53, 6.68, 3.4, 17.58, 62.51, 584.3, 46.63, 21.19, 22.14, 5.74, 8.19, 7.74, 7.64, 4.41, 3.32, 130.76, 3.29, 31.04, 3.26, 18.83, 168.31, 7.68, 120.19, 43.95, 747.12, 18.75, 306.24, 29.72, 5.57, 6.65, 53.2, 7.96, 25.34, 25.57, 8.85, 93.59, 92.96, 23.4, 60.0, 6.63, 12.15, 49.98, 39.75, 7.77, 5.73, 18.74, 11.58, 281.32, 13.99, 4.59, 13.35, 25.05, 9.98, 5.58, 91.43, 288.94, 15.43, 7.8, 9.92, 18.69, 6.63, 78.38, 18.86, 63.03, 26.38, 166.41, 27.78, 54.21, 173.32, 11.12, 17.85, 14.43, 31.31, 3.37, 16.63, 5.51, 77.74, 8.89, 17.71, 3.24, 9.28, 22.12, 2.2, 19.41, 12.23, 22.31, 9.36, 18.85, 51.5, 8.3, 23.0, 29.7, 29.81, 4.65, 75.77, 55.52, 144.45, 6.68, 13.26, 72.78, 56.71, 46.35, 6.63, 8.88, 6.61, 41.7, 15.09, 5.51, 18.78, 74.09, 487.0, 27.52, 18.99, 44.18, 41.76, 6.65, 23.62, 175.68, 446.38, 87.13, 165.69, 16.57, 7.88, 16.57, 80.17, 135.75, 3.29, 134.16, 25.58, 45.13, 114.23, 471.15, 97.75, 12.2, 32.01, 62.21, 22.36, 193.55, 210.65, 42.39, 27.57, 106.15, 44.76, 16.6, 134.76, 18.81, 14.76, 7.97, 160.59, 39.21, 60.36, 62.45, 72.18, 91.15, 23.71, 105.04, 70.87, 25.57, 122.09, 60.09, 38.8, 133.87, 4.41, 13.28, 45.63, 45.41, 67.81, 26.68, 97.33, 723.5, 5.51, 164.05, 165.32, 4.45, 57.67, 85.82, 11.56, 12.26, 17.97, 31.04, 76.72, 15.01, 35.88, 32.37, 23.63, 85.57, 9.34, 4.45, 90.25, 73.71, 45.99, 14.24, 176.85, 65.21, 9.92, 15.02, 12.9, 21.4, 59.94, 64.62, 37.53, 147.89, 36.52, 97.67, 16.65, 22.1, 23.38, 76.85, 16.58, 7.72, 17.75, 91.25, 9.91, 18.46, 4.45, 3.29, 73.18, 19.5, 5.58, 18.85, 28.64, 7.8, 43.74, 4.43, 7.99, 132.4, 41.48, 14.45, 8.78, 8.14, 9.95, 2.46, 16.61, 32.71, 17.74, 4.46, 68.25, 34.55, 9.92, 181.31, 37.63, 125.22, 25.37, 24.45, 220.92, 11.09, 35.46, 588.56, 58.21, 22.39, 78.55, 135.13, 280.65, 273.41, 381.07, 60.56, 68.63, 40.17, 27.68, 23.68, 23.15, 28.8, 20.94, 21.92, 159.06, 9.94, 127.52, 32.4, 15.93, 99.09, 48.31, 104.66, 257.4, 117.08, 180.32, 66.55, 95.99, 17.74, 30.14, 270.54, 39.8, 54.77, 16.04, 76.99, 5.43, 8.78, 76.96, 10.39, 18.47, 290.11, 48.35, 289.06, 10.44, 57.75, 47.83, 101.62, 96.3, 71.62, 256.97, 149.45, 22.17, 23.15, 89.25, 36.46, 90.03, 69.14, 28.27, 28.72, 17.44, 43.38, 56.72, 84.96, 25.4, 55.06, 47.68, 92.11, 6.65, 30.94, 15.38, 27.44, 516.55, 5.83, 19.45, 41.53, 110.69, 6.82, 54.09, 13.31, 89.8, 25.57, 110.89, 3.32, 93.76, 33.81, 80.87, 30.9, 58.53, 185.22, 4.38, 58.75, 189.53, 7.19, 7.8, 48.97, 28.8, 48.52, 45.96, 309.44, 29.16, 2.22, 255.91, 78.7, 102.67, 33.32, 43.2, 19.5, 91.59, 139.89, 5.51, 213.96, 10.02, 10.03, 39.87, 8.95, 27.74, 7.78, 65.93, 45.41, 263.21, 33.06, 5.54, 59.77, 2.2, 9.95, 14.38, 44.76, 96.45, 15.91, 133.07, 38.03, 36.43, 7.83, 105.41, 20.5, 25.35, 20.55, 119.59, 24.31, 28.81, 101.0, 67.0, 143.85, 20.55, 83.45, 60.62, 25.19, 6.65, 1745.95, 41.62, 44.96, 65.42, 9.92, 24.23, 73.56, 34.35, 75.72, 18.77, 88.59, 312.55, 56.43, 106.61, 11.44, 22.04, 5.73, 197.92, 25.32, 144.83, 145.36, 4.43, 18.33, 48.72, 33.42, 8.83, 18.85, 32.25, 88.56, 14.95, 147.39, 9.25, 35.24, 141.51, 14.41, 5.49, 42.28, 75.69, 16.96, 6.71, 17.33, 710.34, 68.92, 28.39, 24.98, 33.03, 31.06, 46.24, 36.77, 43.74, 11.48, 22.14, 13.21, 15.8, 21.9, 5.51, 20.66, 22.04, 127.0, 21.03, 36.75, 61.45, 42.12, 238.3, 57.43, 28.61, 31.31, 15.43, 8.88, 54.26, 34.01, 5.79, 8.02, 25.68, 19.67, 29.19, 4.38, 15.05, 5.57, 32.31, 81.68, 29.92, 397.98, 119.2, 5.52, 25.54, 12.78, 17.78, 100.97, 253.58, 8.92, 22.04, 22.03, 86.57, 97.27, 106.29, 33.31, 13.34, 35.57, 40.75, 6.57, 23.32, 6.63, 30.09, 62.39, 35.62, 25.23, 5.49, 77.67, 4.41, 8.77, 12.09, 32.0, 7.75, 25.44, 27.57, 25.51, 81.59, 8.83, 64.15, 48.92, 52.25, 2.2, 13.29, 15.52, 320.64, 22.26, 21.03, 79.27, 6.61, 59.38, 40.19, 43.07, 2.26, 20.97, 8.8, 205.43, 51.82, 8.78, 90.72, 6.63, 14.46, 85.62, 72.53, 29.24, 68.81, 67.6, 1.15, 13.15, 17.71, 20.06, 77.42, 167.72, 5.54, 34.45, 5.51, 54.04, 7.8, 79.91, 4.62, 66.39, 164.13, 78.1, 49.72, 19.92, 28.92, 709.25, 18.19, 875.38, 60.92, 5.55, 71.14, 301.2, 27.74, 34.26, 108.78, 88.28, 75.83, 7.82, 8.78, 44.68, 20.98, 41.9, 8.88, 124.18, 198.8, 180.0, 71.61, 119.27, 59.33, 3.28, 43.88, 14.46, 64.34, 158.59, 41.98, 32.28, 14.43, 48.49, 2.36, 14.38, 25.52, 7.83, 2.2, 292.18, 8.97, 36.18, 7.8, 8.89, 43.26, 25.35, 12.29, 6.88, 34.48, 11.09, 16.57, 35.99, 13.45, 6.6, 162.65, 13.23, 26.91, 55.62, 61.4, 48.47, 89.62, 7.77, 6.65, 11.56, 23.28, 6.66, 7.74, 4.62, 5.8, 24.56, 10.16, 8.91, 14.45, 25.37, 6.61, 75.29, 11.03, 36.75, 38.61, 36.52, 17.75, 61.87, 31.92, 120.9, 144.82, 70.98, 19.98, 80.09, 30.17, 35.48, 2.4, 42.15, 24.29, 111.26, 71.9, 158.23, 49.75, 7.75, 13.28, 10.97, 5.51, 34.37, 56.61, 138.83, 231.4, 20.17, 29.89, 20.27, 7.69, 77.35, 12.26, 1144.41, 9.95, 7.72, 196.64, 499.4, 114.38, 24.43, 94.88, 75.15, 4.48, 8.89, 196.05, 95.15, 99.28, 42.36, 234.32, 4.59, 80.97, 237.69, 89.34, 4.51, 6.68, 148.42, 108.58, 5.48, 132.38, 7.94, 204.74, 11.08, 74.24, 146.22, 79.5, 17.68, 10.51, 550.77, 45.35, 23.28, 47.57, 40.56, 114.76, 29.81, 15.51, 11.0, 26.61, 6.74, 142.82, 12.17]

डेटा के बारे में कुछ जानकारी:

मीन: 68.71313036020582, भिन्न: 19112.931263699986, मानक विचलन: 138.24952536518882, प्रशिक्षण डेटा में राशि तत्व: 1166

डेटा का हिस्टोग्राम:

यहाँ छवि विवरण दर्ज करें

फिटिंग के लिए अजगर पुस्तकालय का उपयोग करना:

x = np.linspace(0,300,1000)
# Gamma
shape, loc, scale = gamma.fit(data, floc=0)
print(shape, loc, scale)
y = gamma.pdf(x, shape, loc, scale)
plt.title('Fitted Gamma')
plt.plot(x, y)
plt.show()

फिट किया गामा

पैरामीटर: 0.7369587045435088 0 93.2387797804

यह खुद अनुमान लगाया:

def calculateGammaParams(data):
    mean = np.mean(data)
    std = np.std(data)
    shape = (mean/std)**2
    scale = (std**2)/mean
    return (shape, 0, scale)

eshape, eloc, escale = calculateGammaParams(data)
print(eshape, eloc, escale)
ey = gamma.pdf(x, eshape, eloc, escale)
plt.title('Estimated Gamma')
plt.plot(x, ey)
plt.show()

अनुमान

पैरामीटर: 0.247031406055 0 278.155443705

एक स्पष्ट रूप से बहुत बड़ा अंतर देख सकता है।


कृपया बताएं कि आपने "1 से बहुत दूर" क्या गणना की है - यह संबंधित नहीं होगा कि पल-आधारित अनुमान स्वयं अच्छे हैं या नहीं। यदि संभव हो तो अपना डेटा दें (उदाहरण के लिए यदि नमूना आकार आपके पोस्ट में शामिल करने के लिए पर्याप्त छोटा है) और आपके पैरामीटर का अनुमान है कि दोनों तरीके से गणना की गई है।
Glen_b -Reinstate मोनिका

मैंने अपना प्रश्न डेटा, नमूना कोड और भूखंडों के साथ अद्यतन किया है। मुझे आशा है कि इससे मेरे प्रश्न को स्पष्ट करने में मदद मिलेगी।
डीजेन्सेंस

1
आपको लगता है कि आप एक गामा वितरण फिट करना चाहते हैं नहीं लगता है। यह अधिक मौलिक प्रश्न उठाता है: आप पहली बार इस अभ्यास से क्यों गुजर रहे हैं? क्या आप किसी भी वितरण को डेटा में फिट करके पूरा करने की उम्मीद कर रहे हैं ?
whuber

@ जब मैं भविष्य के डेटा के बारे में कुछ धारणाएं बनाने में सक्षम होने के लिए डेटा की फिटिंग कर रहा हूं - तो बाहरी व्यवहार की पहचान करने के लिए अधिक सटीक रूप से। मैंने सुना है गामा / लॉगऑर्म इस प्रकार के डेटा के लिए एक अच्छा फिट होगा।
डीजेन्सेंस

जवाबों:


15

दोनों MLE और क्षण आधारित अनुमानक सुसंगत हैं और इसलिए आप अपेक्षा करेंगे कि गामा वितरण से पर्याप्त बड़े नमूनों में वे काफी हद तक समान होंगे। हालाँकि, वितरण अनिवार्य रूप से एक गामा के करीब नहीं होने पर वे एक जैसे नहीं होंगे।

डेटा के लॉग के वितरण को देखते हुए, यह मोटे तौर पर सममित है - या वास्तव में वास्तव में कुछ सही तिरछा है। यह इंगित करता है कि गामा मॉडल अनुचित है (एक गामा के लिए लॉग को तिरछा छोड़ दिया जाना चाहिए)।

यह हो सकता है कि एक उलटा गामा मॉडल इन आंकड़ों के लिए बेहतर प्रदर्शन कर सकता है। लेकिन लॉग्स में समान हल्के दाएं तिरछा किसी भी अन्य वितरण के साथ देखा जाएगा - हम लॉग स्केल पर तिरछा की दिशा के आधार पर वास्तव में बहुत कुछ नहीं कह सकते हैं।

यह इस स्पष्टीकरण का हिस्सा हो सकता है कि अनुमान के दो सेट क्यों भिन्न हैं - क्षणों की विधि और MLEs एक दूसरे के अनुरूप नहीं होंगे।

आप डेटा को इन्वर्ट करके, गामा को फिट करके, और फिर उन पैरामीटर अनुमानों को ध्यान में रखते हुए उलटे गामा मापदंडों का अनुमान लगा सकते हैं। आप माध्य और मानक विचलन से लॉगऑनॉर्मल मापदंडों का अनुमान लगा सकते हैं (साइट पर कई पोस्ट दिखाते हैं कि कैसे या विकिपीडिया देखें ), लेकिन वितरण की पूंछ जितनी भारी होगी, क्षण अनुमानकों की उतनी ही बदतर प्रवृत्ति होगी।


ऐसा लगता है (मेरे उत्तर के नीचे टिप्पणियों से) कि असली मुद्दा यह है कि पैरामीटर अनुमानों को "ऑन-लाइन" अपडेट किया जाना चाहिए - केवल सारांश जानकारी लेने के लिए, संपूर्ण डेटा नहीं - और सारांश जानकारी से पैरामीटर अनुमान अपडेट करें। प्रश्न में नमूना माध्य और विचरण का उपयोग करने का कारण यह है कि उन्हें जल्दी से अपडेट किया जा सकता है।

हालाँकि, वे एकमात्र ऐसी चीज़ नहीं हैं जिन्हें जल्दी से अपडेट किया जा सकता है!

fX(xθ)=exp(η(θ)T(x)A(θ)+B(x))T(x)

θT

सभी वितरणों के लिए मैं चर्चा करता हूं (गामा, लॉगानॉर्मल, उलटा गामा) पर्याप्त आँकड़े आसानी से अपडेट किए जाते हैं। स्थिरता के कारणों के लिए, मैं निम्नलिखित मात्राओं को अद्यतन करने का सुझाव देता हूं (जो उनके बीच सभी तीन वितरणों के लिए पर्याप्त हैं):

  • डेटा का मतलब

  • डेटा के लॉग का मतलब है

  • डेटा के लॉग का विचरण

sn2n

स्थिर प्रसरण-अद्यतन का उपयोग किया जाना चाहिए। [ वर्गों का मतलब अपडेट करें और उपयोग करें1nxi2x¯2


0


स्पष्टीकरण के लिए धन्यवाद, अगर मैं पूछ सकता हूं तो बेहतर फिटिंग वितरण क्या होगा?
डीजेन्सेंस

मैंने एक संपादन में एक सुझाव दिया है ... एक उलटा गामा बेहतर फिट हो सकता है - या वास्तव में लॉग के बारे में उस अवलोकन के अनुरूप किसी भी अन्य संभावनाएं।
Glen_b -Reinstate मोनिका

मैंने अजगर लाइब्रेरी का उपयोग करके उलटा गामा फिट किया है और परिणाम बहुत आशाजनक दिखते हैं। हालाँकि, मैं काफी हद तक यह पता नहीं लगा सकता हूं कि विश्लेषणात्मक रूप से आकृति और पैमाने को कैसे खोजना है। मैंने सोचा था कि यह उसी calculateGammaParams()फ़ंक्शन का उपयोग करेगा जो मैंने लिखा था और केवल 1 / स्केल और 1 / आकार करके स्केल और आकृति को उलटा कर दिया था। हालाँकि यह गलत लगता है। फिट किए गए 0.918884418421 0 14.82795204710.247031406055 0 278.155443705
परम्स

एक lognormal भी बुरा नहीं लगता है।
निक कॉक्स

@ नाइकॉक्स मैंने वास्तव में गामा को एक कोशिश देने से पहले एक लॉगनॉर्मल की कोशिश की। पहली नज़र में ऐसा लगा कि गामा बेहतर तरीके से फिट हुआ है, हालांकि मुझे नमूने के माध्य / विचरण / एसटीडी का उपयोग करके मापदंडों का अनुमान लगाने में सक्षम होने की आवश्यकता है, क्या यह लॉगऑनॉर्मल के लिए भी आसानी से किया जा सकता है?
डीजेन्सेंस

9

E(X)=αθVar[X]=αθ2αθαθα=E[X]2/Var[X]θ=Var[X]/E[X]α^=x¯2/s2θ^=s2/x¯

वे MLE नहीं हैं (फिर से, विकिपीडिया देखें )। मुझे नहीं पता कि आप मापदंडों का अनुमान लगाने के लिए किस पुस्तकालय का उपयोग करते हैं, लेकिन आमतौर पर ऐसे पुस्तकालयों से MLE की उपज होती है। और वे क्षण अनुमानों की पद्धति के बजाय भिन्न हो सकते हैं।

αθ

अपडेट करें:

डेटा पोस्ट करने के बाद, मैंने MLE और क्षण अनुमानों की विधि प्राप्त करने के लिए R का उपयोग किया। यह प्रदान करता है:

> library(MASS)
> fitdistr(y, dgamma, start=list(shape=1, scale=1))
      shape         scale   
   0.73684030   93.26893829 
 ( 0.02613277) ( 4.59104121)

> mean(y)^2 / var(y)
[1] 0.2468195
> var(y) / mean(y)
[1] 278.3942

तो, अनिवार्य रूप से पाइथन के साथ प्राप्त किया गया था। तो, अनुमान बस इतना है कि अधिकतम संभावना बनाम क्षणों की विधि का उपयोग करके अलग हैं।


1
मैंने अपना प्रश्न डेटा, भूखंडों और नमूना कोड के साथ अद्यतन किया है। मेरा मानना ​​है कि मैंने उन फॉर्मूले का इस्तेमाल किया है जिनका आपने आकार और पैमाने की गणना के लिए उल्लेख किया है। मुझे यकीन नहीं है कि मैं क्या गलत कर रहा हूं।
डीजेन्सेंस

1
जानकारी के लिए धन्यवाद वोल्फगैंग, यह बहुत सराहना की है।
डीजेन्सेंस
हमारी साइट का प्रयोग करके, आप स्वीकार करते हैं कि आपने हमारी Cookie Policy और निजता नीति को पढ़ और समझा लिया है।
Licensed under cc by-sa 3.0 with attribution required.