विचार करें कि आप क्या पूछ रहे हैं। यदि आप केवल यह जानना चाहते हैं कि क्या स्थिति के प्रभाव के लिए समग्र पी-मान 0.05 की तरह किसी प्रकार के मनमाने कटऑफ मान से गुजरता है, तो यह आसान है। सबसे पहले, आप समग्र प्रभाव का पता लगाना चाहते हैं। आप इससे प्राप्त कर सकते हैं anova
।
m <- lmer(...) #just run your lmer command but save the model
anova(m)
अब आपके पास एक एफ वैल्यू है। आप इसे ले सकते हैं और इसे कुछ एफ तालिकाओं में देख सकते हैं । सबसे कम संभव मूल्यवर्ग को चुनें। स्वतंत्रता का दर्जा। कटऑफ 20 के आसपास होने वाली है। आपका एफ इससे बड़ा हो सकता है लेकिन मैं गलत हो सकता हूं। यहां तक कि अगर यह नहीं है, तो अपने पास मौजूद प्रयोगों की संख्या का उपयोग करके यहां एक पारंपरिक एनोवा गणना से स्वतंत्रता की डिग्री की संख्या को देखें। उस मूल्य को आप एक कटऑफ के लिए लगभग 5 से नीचे रखते हैं। अब आप इसे आसानी से अपने अध्ययन में पास कर लेते हैं। आपके मॉडल के लिए 'सही' df इससे कुछ अधिक होगा क्योंकि आप प्रत्येक डेटा बिंदु को एंग्लो मॉडल के रूप में एकत्रित मानों के विपरीत मॉडलिंग कर रहे हैं।
यदि आप वास्तव में एक सटीक पी-मूल्य चाहते हैं तो ऐसी कोई बात नहीं है जब तक कि आप इसके बारे में एक सैद्धांतिक बयान देने के लिए तैयार न हों। यदि आप पिनेहिरो और बेट्स (2001, और शायद इस विषय पर कुछ और किताबें पढ़ते हैं ... इन उत्तरों में अन्य लिंक देखें) और आप एक विशिष्ट डीएफ के लिए तर्क के साथ आते हैं तो आप इसका उपयोग कर सकते हैं। लेकिन आप वास्तव में वैसे भी एक सटीक पी-मूल्य की तलाश नहीं कर रहे हैं। मैं इसका उल्लेख करता हूं क्योंकि आपको इसलिए सटीक p- मान की रिपोर्ट नहीं देनी चाहिए, केवल यह कि आपका कटऑफ पास हो गया है।
आपको वास्तव में माइक लॉरेंस जवाब पर विचार करना चाहिए क्योंकि पी-मानों के लिए पास बिंदु के साथ चिपके रहने का पूरा विचार अंतिम और सबसे महत्वपूर्ण जानकारी आपके डेटा से निकालने के लिए आम तौर पर गुमराह किया जाता है (लेकिन आपके मामले में नहीं हो सकता है क्योंकि हम डॉन ' t वास्तव में जानने के लिए पर्याप्त जानकारी है)। माइक एलआर गणना के एक पालतू संस्करण का उपयोग कर रहा है जो दिलचस्प है, लेकिन इस पर बहुत सारे दस्तावेज ढूंढना मुश्किल हो सकता है। यदि आप AIC का उपयोग करके मॉडल के चयन और व्याख्या को देखते हैं तो आप इसे पसंद कर सकते हैं।