मान लीजिए कि X
कुछ संभाव्यता सिद्धांत पाठ्यपुस्तक का उत्तर है
च जेड ( जेड ) = { 1 / 2 , अगर 0 ≤ जेड ≤ 1 1 / ( 2 जेड 2 ) , यदि z > 1 0 , अन्यथा ।
मैं सोच रहा हूँ, समरूपता से, नहीं होना चाहिए च जेड ( 1 / 2 ) = च जेड ( 2 )
मान लीजिए कि X
कुछ संभाव्यता सिद्धांत पाठ्यपुस्तक का उत्तर है
च जेड ( जेड ) = { 1 / 2 , अगर 0 ≤ जेड ≤ 1 1 / ( 2 जेड 2 ) , यदि z > 1 0 , अन्यथा ।
मैं सोच रहा हूँ, समरूपता से, नहीं होना चाहिए च जेड ( 1 / 2 ) = च जेड ( 2 )
जवाबों:
सही तर्क है कि स्वतंत्र के साथ एक्स , वाई ~ यू ( 0 , 1 ) ,
जेड = Y
यह वितरण है सममित - यदि आप इसे पर सही तरीके से लग रहे हो।
आपके पास जो समरूपता है (सही ढंग से) देखी गई है कि Y / X और X / Y = 1 / ( Y / X ) को समान रूप से वितरित किया जाना चाहिए। अनुपात और शक्तियों के साथ काम करते समय, आप वास्तव में सकारात्मक वास्तविक संख्याओं के गुणक समूह के भीतर काम कर रहे हैं । स्थान अपरिवर्तनीय उपाय के अनुरूप घ λ = घ एक्स पर additive वास्तविक संख्या आर है अपरिवर्तनीय पैमाना उपाय घ μ = घ एक्स / एक्स
dμ
dμ
dμ
(3) establishes an isomorphism between the measured groups (R,+,dλ)
Let's apply these observations by writing the probability element of Z=Y/X
fZ(z)dz=gZ(z)dμ=12{1dz=zdμ,if 0≤z≤11z2dz=1zdμ,if z>1.
That is, the PDF with respect to the invariant measure dμ
This is not a mere one-off trick. Understanding the role of dμ
The idea of an invariant measure on a group is far more general, too, and has applications in that area of statistics where problems exhibit some invariance under groups of transformations (such as changes of units of measure, rotations in higher dimensions, and so on).
If you think geometrically...
In the X
Consider a small interval of Z
However, for b>1
Then the same algebra demonstrated in other answers finishes the problem. In particular, returning to the OP's last question, fZ(1/2) corresponds to a line that reaches X=1, but fZ(2) does not, so the desired symmetry does not hold.
Yea the link Distribution of a ratio of uniforms: What is wrong? provides CDF of Z=Y/X. The PDF here is just derivative of the CDF. So the formula is correct. I think your problem lies in the assumption that you think Z is "symmetric" around 1. However this is not true. Intuitively Z should be a skewed distribution, for example it is useful to think when Y is a fixed number between (0,1) and X is a number close to 0, thus the ratio would be going to infinity. So the symmetry of distribution is not true. I hope this help a bit.