MathOverflow पर एक प्रश्न इस प्रश्न से संबंधित है।
IID यादृच्छिक चर के लिए, वें उच्चतम को एक क्रम सांख्यिकीय कहा जाता है ।k
यहां तक कि IID बर्नौली यादृच्छिक चर के लिए, माध्यिका के अलावा किसी भी क्रम सांख्यिकीय का संस्करण जनसंख्या के विचरण से अधिक हो सकता है। उदाहरण के लिए, यदि है संभावना के साथ और संभावना के साथ और है, तो अधिकतम है संभावना के साथ , तो जनसंख्या का विचरण है , जबकि विचरण अधिकतम ।Xi11/1009/10M=101≈1−1/e0.090.23
आदेश के आँकड़ों के दो पेपर यहाँ दिए गए हैं:
यांग, एच। (1982) "माध्यिका और कुछ अन्य आदेश आँकड़ों के संस्करण पर।" सांड। Inst। गणित। Acad। सिनिका, 10 (2) पीपी 197-204
पापदातोस, एन। (1995) "ऑर्डर आंकड़ों का अधिकतम विचरण।" एन। Inst। सांख्यिकीविद। गणित, 47 (1) पीपी 185-193
मेरा मानना है कि दूसरे पेपर में अधिकतम के विचरण पर ऊपरी सीमा । वे बताते हैं कि समानता नहीं हो सकती है, लेकिन IID बर्नौली यादृच्छिक चर के लिए कोई भी कम मूल्य हो सकता है।Mσ2