द्विपद प्रतिगमन और लॉजिस्टिक प्रतिगमन के बीच अंतर क्या है?


20

मैंने हमेशा लॉजिस्टिक रिग्रेशन के बारे में सोचा है जैसे कि द्विपद रिग्रेशन का एक विशेष मामला है जहां लिंक फ़ंक्शन लॉजिस्टिक फ़ंक्शन (इसके बजाय, प्रोबेट फंक्शन) है।

एक और सवाल पर जवाब पढ़ने से , हालांकि, ऐसा लगता है कि मैं भ्रमित हो सकता हूं, और एक लॉजिस्टिक लिंक के साथ लॉजिस्टिक रिग्रेशन और द्विपद रिग्रेशन के बीच अंतर है।

क्या फर्क पड़ता है?

जवाबों:


13

लॉजिस्टिक रिग्रेशन "लॉजिस्टिक" लिंक फ़ंक्शन के साथ एक द्विपद रिग्रेशन है:

जी(पी)=लॉग(पी1-पी)=एक्सβ

हालांकि मुझे यह भी लगता है कि लॉजिस्टिक रिग्रेशन आमतौर पर द्विपद गणना के बजाय द्विपद अनुपात पर लागू होता है।


1
आमतौर पर लॉजिस्टिक रिग्रेशन का क्या मतलब है, यह मायने रखता है कि अनुपात के बजाय अनुपात पर लागू होता है। मान लीजिए, मैं यह अनुमान लगाने की कोशिश कर रहा हूं कि लोग किसी पार्टी में शामिल होंगे या नहीं, और यह कि किसी विशेष पार्टी के लिए, मुझे पता है कि 9 लोगों ने भाग लिया था और 1 नहीं था - क्या आपका मतलब यह है कि लॉजिस्टिक प्रतिगमन इसे एक प्रशिक्षण उदाहरण के रूप में लेता है (यानी, इस पार्टी की सफलता दर 0.9 थी), जबकि एक लिंक के साथ द्विपद प्रतिगमन यह 10 प्रशिक्षण उदाहरणों (9 सफलताओं, 1 विफलता) के रूप में ले जाएगा?
राएगेटिन

@raehtin - दोनों मामलों में यह क्रमशः नमूना / प्रशिक्षण मामला होगा, और साथ। अंतर माध्य और विचरण कार्यों का रूप है। द्विपद के लिए, माध्य , canoncial लिंक अब (जिसे "प्राकृतिक पैरामीटर" भी कहा जाता है), और विचरण फ़ंक्शन है फैलाव पैरामीटर । लॉजिस्टिक के लिए हमारे पास , उपरोक्त लिंक, का विचरण समारोह और बराबर फैलाव है ।( n i , f i ) = ( 10 , 0.9 ) ( n i , x i ) = ( 10 , 9 ) μ i = n i p i log ( μ i)1(nमैं,मैं)=(10,0.9)(nमैं,एक्समैं)=(10,9)μमैं=nमैंपीमैंV(μi)=μi(ni-μi)लॉग(μमैंnमैं-μमैं) φमैं=1μमैं=पीमैंवी(μमैं)=μमैं(1-μमैं)φमैं=1वी(μमैं)=μमैं(nमैं-μमैं)nमैंφमैं=1μमैं=पीमैंवी(μमैं)=μमैं(1-μमैं)φमैं=1nमैं
probabilityislogic

लॉजिस्टिक के साथ, को माध्य और विचरण कार्यों से अलग किया जाता है, इसलिए इसे अधिक आसानी से वेटिंग के माध्यम से ध्यान में रखा जा सकता हैnमैं
संभाव्यता

आह, समझ गया, मुझे लगता है कि मैं देख रहा हूं। इसका मतलब यह है कि वे समान परिणाम उत्पन्न करते हैं (बस एक अलग तरीके से पहुंचे)?
राएगटिन

1
@raegtin - मुझे ऐसा लगता है। GLM वेट, , दोनों मामलों में समान हैं, और लिंक फ़ंक्शन एक ही लॉगिट मान पैदा करता है। तो जब तक X वैरिएबल भी समान हैं, तब तक उसे समान परिणाम देना चाहिए। wमैं2=1φमैंवी(μमैं)[जी'(μमैं)]2
संभाव्यता

4

द्विपद प्रतिगमन किसी भी प्रकार का GLM है जो द्विपद माध्य-विचरण संबंध का उपयोग करता है, जहाँ विचरण । लॉजिस्टिक रिग्रेशन में the लॉगिट फ़ंक्शन के साथ "लिंक" फ़ंक्शन कहा जाता है। हालाँकि द्विपद प्रतिगमन मॉडल के एक सामान्य वर्ग को किसी भी प्रकार के लिंक फ़ंक्शन के साथ परिभाषित किया जा सकता है, यहां तक ​​कि बाहर एक श्रेणी का उत्पादन करने वाले फ़ंक्शन भी । उदाहरण के लिए, प्रोबिट रिग्रेशन व्युत्क्रम सामान्य सीडीएफ की एक कड़ी लेता है, सापेक्ष जोखिम प्रतिगमन एक लॉग फ़ंक्शन के लिंक के रूप में लेता है, और एडिटिव जोखिम मॉडल पहचान लिंक मॉडल को लेते हैं।वर(Y)=Y^(1-Y^)Y^=logit-1(एक्सβ^)=1/(1-exp(एक्सβ^))[0,1]

हमारी साइट का प्रयोग करके, आप स्वीकार करते हैं कि आपने हमारी Cookie Policy और निजता नीति को पढ़ और समझा लिया है।
Licensed under cc by-sa 3.0 with attribution required.