R में कार पैकेज के साथ ANOVA विरोधाभासों की स्थापना और व्याख्या कैसे करें?


15

मान लीजिए कि मेरे पास एक सरल 2x2 फैक्टरियल प्रयोग है जिसे मैं एनोवा पर करना चाहता हूं। इस तरह, उदाहरण के लिए:

d   <- data.frame(a=factor(sample(c('a1','a2'), 100, rep=T)),
                  b=factor(sample(c('b1','b2'), 100, rep=T)));
d$y <- as.numeric(d$a)*rnorm(100, mean=.75, sd=1) +
       as.numeric(d$b)*rnorm(100, mean=1.2, sd=1) +
       as.numeric(d$a)*as.numeric(d$b)*rnorm(100, mean=.5, sd=1) +
       rnorm(100);
  1. एक महत्वपूर्ण अंतःक्रिया के अभाव में, डिफ़ॉल्ट रूप से (यानी contr.treatment) का आउटपुट सभी स्तरों के सभी स्तरों पर और उसके स्तर का Anova()समग्र महत्व है , क्या यह सही है?abba

  2. मुझे एक कंट्रास्ट को कैसे निर्दिष्ट करना चाहिए जो मुझे स्तर बी 1 पर स्थिर होने के aसाथ प्रभाव के महत्व का परीक्षण करने की अनुमति देगा , स्तर बी 2 पर स्थिर रहने के साथ , और बातचीत के बारे में ?baba:b

जवाबों:


18

आपका उदाहरण असमान कोशिका आकार की ओर जाता है, जिसका अर्थ है कि विभिन्न "वर्गों के योग के प्रकार" पदार्थ, और मुख्य प्रभावों के लिए परीक्षण उतना आसान नहीं है जितना आप इसे कहते हैं। Anova()वर्गों के प्रकार II का उपयोग करता है। इस सवाल को एक शुरुआत के लिए देखें ।

विरोधाभासों का परीक्षण करने के विभिन्न तरीके हैं। ध्यान दें कि एसएस प्रकार कोई फर्क नहीं पड़ता क्योंकि हम अंततः संबंधित वन-फैक्टोरियल डिज़ाइन में परीक्षण कर रहे हैं। मैं निम्नलिखित चरणों का उपयोग करने का सुझाव देता हूं:

# turn your 2x2 design into the corresponding 4x1 design using interaction()
> d$ab <- interaction(d$a, d$b)       # creates new factor coding the 2*2 conditions
> levels(d$ab)                        # this is the order of the 4 conditions
[1] "a1.b1" "a2.b1" "a1.b2" "a2.b2"

> aovRes <- aov(y ~ ab, data=d)       # oneway ANOVA using aov() with new factor

# specify the contrasts you want to test as a matrix (see above for order of cells)
> cntrMat <- rbind("contr 01"=c(1, -1,  0,  0),  # coefficients for testing a within b1
+                  "contr 02"=c(0,  0,  1, -1),  # coefficients for testing a within b2
+                  "contr 03"=c(1, -1, -1,  1))  # coefficients for interaction

# test contrasts without adjusting alpha, two-sided hypotheses
> library(multcomp)                   # for glht()
> summary(glht(aovRes, linfct=mcp(ab=cntrMat), alternative="two.sided"),
+         test=adjusted("none"))
Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: User-defined Contrasts
Fit: aov(formula = y ~ ab, data = d)

Linear Hypotheses:
              Estimate Std. Error t value Pr(>|t|)
contr 01 == 0  -0.7704     0.7875  -0.978    0.330
contr 02 == 0  -1.0463     0.9067  -1.154    0.251
contr 03 == 0   0.2759     1.2009   0.230    0.819
(Adjusted p values reported -- none method)    

अब मैन्युअल रूप से पहले कंट्रास्ट के लिए परिणाम की जांच करें।

> P       <- 2                             # number of levels factor a
> Q       <- 2                             # number of levels factor b
> Njk     <- table(d$ab)                   # cell sizes
> Mjk     <- tapply(d$y, d$ab, mean)       # cell means
> dfSSE   <- sum(Njk) - P*Q                # degrees of freedom error SS
> SSE     <- sum((d$y - ave(d$y, d$ab, FUN=mean))^2)    # error SS
> MSE     <- SSE / dfSSE                   # mean error SS
> (psiHat <- sum(cntrMat[1, ] * Mjk))      # contrast estimate
[1] -0.7703638

> lenSq <- sum(cntrMat[1, ]^2 / Njk)       # squared length of contrast
> (SE   <- sqrt(lenSq*MSE))                # standard error
[1] 0.7874602

> (tStat <- psiHat / SE)                   # t-statistic
[1] -0.9782893

> (pVal <- 2 * (1-pt(abs(tStat), dfSSE)))  # p-value
[1] 0.3303902

3
धन्यवाद!!! आपने केवल एक प्रश्न का उत्तर दिया है कि स्नातक स्तर के दो सेमेस्टर नहीं हैं। मैंने पहले भी वन-वे एनोवा का उपयोग करने पर विचार किया था, लेकिन कोई पुष्टि नहीं कर पाया कि यह एक वैध दृष्टिकोण था।
f1r3br4nd

@ f1r3br4nd यह एमएस के संबद्ध वन-वे और मूल दो-तरफा डिज़ाइन के बराबर होने के बाद से वैध है।
कार्याल

एक अंतिम अनुवर्ती प्रश्न, अगर मैं हो सकता है: दो-तरफ़ा बातचीत कैसे बड़ी संख्या में चर के इंटरैक्शन को सामान्य करती है? यदि मेरे पास A B C पद है, तो क्या मैं A: B = (A | B = 1 - A | B = 2) का निर्माण करूंगा, C: B = (C | B = 1 - C - B = 2) ), ए: बी: सी = ए: बी - सी: बी, और इतने पर?
191 बजे f1r3br4nd

2
@ f1r3br4nd 2x2x2 डिज़ाइन में, केवल एक अद्वितीय A B C इंटरैक्शन कॉन्ट्रास्ट है (जैसे 2x2 के मामले में केवल एक है)। ए बी सी इंटरैक्शन-कॉन्ट्रास्ट में गुणांक को "डिजाइन क्यूब" में पंक्तियों (ए), कॉलम (बी), और विमानों (सी) पर शून्य करना पड़ता है। यदि संबद्ध वन-वे डिज़ाइन में कोशिकाओं का क्रम है a1.b1.c1, a2.b1.c1, a1.b2.c1, a2.b2.c1, a1.b1.c2, a2.b1.c2, a1.b2.c2, a2.b2.c2, तो गुणांक हैं c(1, -1, -1, 1, -1, 1, 1, -1)। यदि आपके कारकों में दो से अधिक समूह हैं, तो सम-टू-जीरो नियम का पालन करने वाले सभी विरोधाभास 3-तरफा इंटरैक्शन विरोधाभास हैं।
काराकल
हमारी साइट का प्रयोग करके, आप स्वीकार करते हैं कि आपने हमारी Cookie Policy और निजता नीति को पढ़ और समझा लिया है।
Licensed under cc by-sa 3.0 with attribution required.