हो सकता है कि यह अच्छा हो कि बोन्फ्रोन की तरह कई परीक्षण सुधारों के पीछे '' तर्क '' को समझा जाए। अगर वह स्पष्ट है तो आप खुद को आंक सकेंगे कि आपको उन्हें लागू करना चाहिए या नहीं।
एक परिकल्पना परीक्षण में कोई वास्तविक दुनिया के बारे में कुछ ज्ञात या ग्रहण किए गए तथ्यों के लिए सबूत खोजने की कोशिश करता है। यह गणित में '' विरोधाभास द्वारा प्रमाण '' के समान है, यदि कोई यह साबित करना चाहता है कि उदाहरण के लिए एक पैरामीटर गैर-शून्य है, तो कोई मान लेगा कि विपरीत सत्य है, अर्थात कोई मानता है कि H 0 : μ = 0 और कोई उस चीज़ को खोजने की कोशिश करता है जो उस धारणा के तहत असंभव है। आंकड़ों में चीजें बहुत कम असंभव हैं, लेकिन वे बहुत ही असंभव हो सकती हैं। μH0:μ=0
H1:μ≠0H0:μ=0α
H0H0
H0H0H1
गलत प्रमाण विज्ञान में एक बुरी बात है क्योंकि हमारा मानना है कि दुनिया के बारे में सच्चा ज्ञान प्राप्त किया है, लेकिन वास्तव में हम नमूने के साथ बुरा हो सकता है। इस प्रकार की त्रुटियों को फलस्वरूप नियंत्रित किया जाना चाहिए। इसलिए किसी को इस तरह के साक्ष्य की संभावना पर एक ऊपरी सीमा डालनी चाहिए, या किसी को I त्रुटि के प्रकार को नियंत्रित करना चाहिए। यह अग्रिम में एक स्वीकार्य महत्व स्तर तय करके किया जाता है।
5%H05%H0H1H1
H0:μ1=0&μ2=0 versus H1:μ1≠0|μ2≠0 and that we use a signficance level α=0.05.
One possibility to do this is to split this hypothesis test and to test H(1)0:μ1=0 versus H(1)0:μ1≠0 and to test H(2)1:μ2=0 versus H(2)1:μ2≠0 both at the significance level α=0.05.
To do both tests we draw one sample , so we use one and the same sample to do both of these tests. I may have bad luck with that one sample and erroneously reject H(1)0 but with that same sample I may also have bad luck with the sample for the second test and erroneously reject H(1)0
Therefore, the chance that at least one of the two is an erroneous rejection is 1 minus the probability that both are not rejected, i.e. 1−(1−0.05)2=0.0975, where it was assumed that both tests are independent. In other words, the type I error has ''inflated'' to 0.0975 which is almost double α.
The important fact here is that the two tests are based on one and the sampe sample !
Note that we have assumed independence. If you can not assume independence then you can show, using the Bonferroni inequality$ that the type I error can inflate up to 0.1.
Note that Bonferroni is conservative and that Holm's stepwise procedure holds under the same assumptions as for Bonferroni, but Holm's procedure has more power.
When the variables are discrete it's better to use test statistics based on the minimum p-value and if you are ready to abandon type I error control when doing a massive number of tests then False Discovery Rate procedures may be more powerful.
EDIT :
If e.g. (see the example in the answer by @Frank Harrell)
H(1)0:μ1=0 versus H(1)1:μ1≠0 is the a test for the effect of a chemotherapy and
H(2)0:μ1=0 versus H(2)1:μ2≠0 is the test for the effect on tumor shrinkage,
then, in order to control the type I error at 5% for the hypothesis H(12)0:μ1=0&μ2=0 versus H(12)1:μ1≠0|μ2≠0 (i.e. the test that at least one of them has an effect) can be carried out by testing (on the same sample)
H(1)0 versus H(1)1 at the 2.5% level and also H(2)0 versus H(2)1 at the 2.5% level.