एक अनपेक्षितकृत प्रतिगमन में, आप अक्सर पैरामीटर अंतरिक्ष में एक रिज * प्राप्त कर सकते हैं, जहां रिज के साथ कई अलग-अलग मूल्य सभी या कम से कम वर्गों के मानदंड पर भी करते हैं।
* (कम से कम, यह संभावना समारोह में एक रिज है - वे वास्तव में आरएसएस की कसौटी में $ घाटियों हैं , लेकिन मैं इसे रिज कहूंगा, क्योंकि यह पारंपरिक लगता है - या यहां तक कि, एलेक्सिस अंक के रूप में) टिप्पणियों में बाहर, मैं कह सकता हूँ कि एक थाल्वेग , एक घाटी का प्रतिरूप है)
पैरामीटर स्पेस में कम से कम चौकोर कसौटी में रिज की उपस्थिति में, रिज रिग्रेशन के साथ आपको मिलने वाला जुर्माना कसौटी पर खरा उतरने के साथ उन लकीरों से छुटकारा दिलाता है जैसे कि पैरामीटर मूल से दूर होते हैं।
[ साफ छवि ]
पहले प्लॉट में, पैरामीटर मान (रिज के साथ) में एक बड़ा बदलाव आरएसएस की कसौटी में एक मामूली बदलाव पैदा करता है। यह संख्यात्मक अस्थिरता पैदा कर सकता है; यह छोटे परिवर्तनों के लिए बहुत संवेदनशील है (उदाहरण के लिए डेटा मान में छोटा परिवर्तन, यहां तक कि ट्रंकेशन या राउंडिंग त्रुटि)। पैरामीटर अनुमान लगभग पूरी तरह से सहसंबद्ध हैं। आपको पैरामीटर अनुमान मिल सकते हैं जो परिमाण में बहुत बड़े हैं।
इसके विपरीत, इस बात को उठाकर कि रिज प्रतिगमन कम हो जाता है ( दंड को जोड़कर ) जब पैरामीटर 0 से दूर होते हैं, तो स्थितियों में छोटे परिवर्तन (जैसे थोड़ी गोलाई या ट्रंकेशन त्रुटि) परिणाम में विशाल परिवर्तन नहीं कर सकते हैं अनुमान। दंड अवधि 0 की ओर सिकुड़ती है (कुछ पूर्वाग्रह के परिणामस्वरूप)। पूर्वाग्रह की एक छोटी राशि विचरण (उस रिज को समाप्त करके) में पर्याप्त सुधार खरीद सकती है।L2
अनुमानों की अनिश्चितता कम हो जाती है (मानक त्रुटियां दूसरी व्युत्पन्न से संबंधित होती हैं, जो दंड से बड़ी हो जाती है)।
पैरामीटर अनुमानों में सहसंबंध कम हो जाता है। अब आपको पैरामीटर अनुमान नहीं मिलेंगे जो कि परिमाण में बहुत बड़े हैं यदि छोटे मापदंडों के लिए RSS बहुत अधिक खराब नहीं होगा।