क्यूक्यू प्लॉट की व्याख्या कैसे करें


172

मैं एक छोटे डेटासेट (21 अवलोकनों) के साथ काम कर रहा हूं और आर में सामान्य क्यूक्यू प्लॉट है:

यहां छवि विवरण दर्ज करें

यह देखते हुए कि साजिश सामान्यता का समर्थन नहीं करती है, मैं अंतर्निहित वितरण के बारे में क्या अनुमान लगा सकता हूं? यह मुझे लगता है कि अधिक वितरण को दाईं ओर तिरछा करना बेहतर होगा, क्या यह सही है? इसके अलावा, हम डेटा से कौन से अन्य निष्कर्ष निकाल सकते हैं?


9
आप सही हैं कि यह सही तिरछापन इंगित करता है। मैं QQ भूखंडों की व्याख्या करने पर कुछ पदों का पता लगाने की कोशिश करूंगा।
Glen_b

3
आपको निष्कर्ष निकालना नहीं है; आपको केवल यह तय करने की आवश्यकता है कि आगे क्या प्रयास करना है। यहां मैं डेटा को वर्गाकार रूट करने या लॉग करने पर विचार करूंगा।
निक कॉक्स

11
(1.5,2)(1.5,220)(0,70)

3
@Glen_b मेरे प्रश्न के उत्तर में कुछ जानकारी है : ysts.stackexchange.com/questions/71065/… और उत्तर के लिंक में एक और अच्छा स्रोत है: आँकड़े ।stackexchange.com/questions/52212-qq-plot-does-not
-मैच

यह क्या? क्या QQ का प्लॉट उल्लेखनीय रूप से वितरित डेटा दिखाता है? ! यहाँ छवि विवरण दर्ज करें
डेविड

जवाबों:


292

यदि मान एक रेखा के साथ स्थित होते हैं, तो वितरण का वही आकार (स्थान और स्केल तक) होता है, जैसा कि सैद्धांतिक वितरण का है।

स्थानीय व्यवहार : जब x- अक्ष पर y- अक्ष और (अनुमानित) पर छांटे गए नमूना मानों को देखते हुए, हम यह पहचान सकते हैं कि भूखंड के कुछ अनुभाग में मान स्थानीय रूप से समग्र रैखिक प्रवृत्ति से भिन्न होते हैं या नहीं यह देखकर। मूल्यों को कम या ज्यादा केंद्रित किया जाता है, क्योंकि सैद्धांतिक वितरण एक भूखंड के उस भाग में होता है:

चार QQ भूखंडों में से अनुभाग

जैसा कि हम देखते हैं, कम संकेंद्रित बिंदु अधिक से अधिक संकेंद्रित बिंदुओं को बढ़ाते हैं और माना जाता है कि समग्र रैखिक संबंध की तुलना में तेजी से कम वृद्धि होती है, और चरम मामलों में नमूने के घनत्व में अंतर होता है (निकट-ऊर्ध्वाधर कूद के रूप में दिखाता है) या निरंतर मूल्यों की एक कील (मूल्य क्षैतिज रूप से संरेखित)। यह हमें एक भारी पूंछ या एक हल्की पूंछ को प्रदर्शित करने की अनुमति देता है और इसलिए, सैद्धांतिक वितरण की तुलना में अधिक तिरछा या छोटा होता है, और इसी तरह।

समग्र रूप:

यहां पर QQ- प्लॉट औसत रूप से (वितरण के विशेष विकल्पों के लिए) जैसे दिखते हैं :

यहां छवि विवरण दर्ज करें

लेकिन यादृच्छिकता चीजों को अस्पष्ट करती है, विशेष रूप से छोटे नमूनों के साथ:

यहां छवि विवरण दर्ज करें

n=21

यहां छवि विवरण दर्ज करें

n=21

आपको यह सुझाव भी उपयोगी हो सकता है कि किसी विशेष राशि के वक्रता या विग्लिग्नेस के बारे में चिंता करने के लिए आपको यह तय करने की कोशिश करना उपयोगी है।

सामान्य रूप से व्याख्या के लिए एक अधिक उपयुक्त मार्गदर्शिका में छोटे और बड़े नमूना आकारों में डिस्प्ले भी शामिल होंगे।


18
यह एक बहुत ही व्यावहारिक मार्गदर्शिका है, उस सारी जानकारी को इकट्ठा करने के लिए आपका बहुत-बहुत धन्यवाद।
जॉनके जू

4
मैं समझता हूं कि यह रैखिकता से आकार और प्रकार का विचलन है जो यहां मायने रखता है, लेकिन फिर भी यह अजीब लग रहा है कि दोनों कुल्हाड़ियों को "... क्वांटाइल" लेबल किया गया है और एक अक्ष 0.2 0.4 0.6 के रूप में और दूसरा -2 -1 0 के रूप में जाता है 1 2. फिर से यह ठीक लगता है कि कुछ डेटा पॉइंट सैद्धांतिक वितरण के मध्य 40% के भीतर हैं, लेकिन उन्हें अपने स्वयं के वितरण के 3% के बीच कैसे वितरित किया जा सकता है, जैसा कि आपके निचले-दाएं-सबसे प्लॉट पर y- अक्ष बताता है?
मैकेंड

2
@Macond y- अक्ष डेटा के कच्चे मूल्यों को दर्शाता है, न कि उनके परिमाणों को। मैं सहमत हूं कि y- अक्ष को मानकीकृत करने से चीजें बहुत स्पष्ट हो जाएंगी , और मुझे नहीं पता कि आर डिफ़ॉल्ट रूप से ऐसा क्यों नहीं करता है। क्या कोई इस पर कुछ प्रकाश डाल सकता है?
गॉर्डन गुस्ताफसन

4
@ Macord के लिए अपनी पहली टिप्पणी के संबंध में @GordonGustafson एक बहुत अच्छा कारण है कि आप डेटा का मानकीकरण क्यों नहीं करते हैं - क्योंकि QQ प्लॉट डेटा का एक प्रदर्शन है ! यह आपके द्वारा फ़ंक्शन करने के लिए आपूर्ति किए गए डेटा में जानकारी दिखाने के लिए डिज़ाइन किया गया है (यह आपके द्वारा बॉक्सप्लेट या हिस्टोग्राम को दिए गए डेटा को मानकीकृत करने के लिए बहुत अधिक समझ में आता है)। यदि आप इसे रूपांतरित करते हैं, तो यह अब डेटा का प्रदर्शन नहीं है (हालांकि प्लॉट में आकार समान हो सकता है, आप प्लॉट पर स्थान या स्केल नहीं दिखाते हैं)। मुझे यकीन नहीं है कि यह आपको लगता है कि एक मानकीकृत भूखंड में स्पष्ट होगा - क्या आप स्पष्ट कर सकते हैं?
Glen_b

2
@ ज़ियाओवेई नहीं, एक वर्दी में वास्तव में बहुत हल्की पूंछ होती है - यकीनन, बिल्कुल भी नहीं। सब कुछ केंद्र के 2 एमएडी के भीतर है। इस उत्तर का पहला पैराग्राफ स्पष्ट, सामान्य, सोचने का तरीका देता है कि 'भारी-पूंछ वाले' का क्या मतलब है।
ग्लेन_ब

63

मैंने सामान्य क्यूक्यू प्लॉट की व्याख्या करने में मदद करने के लिए एक चमकदार ऐप बनाया। इस लिंक को आज़माएं ।

इस ऐप में, आप डेटा के तिरछापन, कालानुक्रम (कर्टोसिस) और मोडेलिटी को समायोजित कर सकते हैं और आप देख सकते हैं कि हिस्टोग्राम और क्यूक्यू प्लॉट कैसे बदलते हैं। इसके विपरीत, आप इसका उपयोग इस तरह से कर सकते हैं कि क्यूक्यू प्लॉट का पैटर्न दिया गया है, फिर जांच करें कि तिरछा आदि कैसा होना चाहिए।

अधिक जानकारी के लिए, उसमें दस्तावेज देखें।


मुझे महसूस हुआ कि इस ऐप को ऑनलाइन उपलब्ध कराने के लिए मेरे पास पर्याप्त खाली जगह नहीं है। : अनुरोध के रूप में, मैं सभी तीन कोड हिस्सा प्रदान करेगा sample.R, server.Rऔर ui.Rयहाँ। जो लोग इस ऐप को चलाने के इच्छुक हैं वे इन फाइलों को Rstudio में लोड कर सकते हैं और फिर इसे अपने पीसी पर चला सकते हैं।

sample.Rफ़ाइल:

# Compute the positive part of a real number x, which is $\max(x, 0)$.
positive_part <- function(x) {ifelse(x > 0, x, 0)}

# This function generates n data points from some unimodal population.
# Input: ----------------------------------------------------
# n: sample size;
# mu: the mode of the population, default value is 0.
# skewness: the parameter that reflects the skewness of the distribution, note it is not
#           the exact skewness defined in statistics textbook, the default value is 0.
# tailedness: the parameter that reflects the tailedness of the distribution, note it is
#             not the exact kurtosis defined in textbook, the default value is 0.

# When all arguments take their default values, the data will be generated from standard 
# normal distribution.

random_sample <- function(n, mu = 0, skewness = 0, tailedness = 0){
  sigma = 1

  # The sampling scheme resembles the rejection sampling. For each step, an initial data point
  # was proposed, and it will be rejected or accepted based on the weights determined by the
  # skewness and tailedness of input. 
  reject_skewness <- function(x){
      scale = 1
      # if `skewness` > 0 (means data are right-skewed), then small values of x will be rejected
      # with higher probability.
      l <- exp(-scale * skewness * x)
      l/(1 + l)
  }

  reject_tailedness <- function(x){
      scale = 1
      # if `tailedness` < 0 (means data are lightly-tailed), then big values of x will be rejected with
      # higher probability.
      l <- exp(-scale * tailedness * abs(x))
      l/(1 + l)
  }

  # w is another layer option to control the tailedness, the higher the w is, the data will be
  # more heavily-tailed. 
  w = positive_part((1 - exp(-0.5 * tailedness)))/(1 + exp(-0.5 * tailedness))

  filter <- function(x){
    # The proposed data points will be accepted only if it satified the following condition, 
    # in which way we controlled the skewness and tailedness of data. (For example, the 
    # proposed data point will be rejected more frequently if it has higher skewness or
    # tailedness.)
    accept <- runif(length(x)) > reject_tailedness(x) * reject_skewness(x)
    x[accept]
  }

  result <- filter(mu + sigma * ((1 - w) * rnorm(n) + w * rt(n, 5)))
  # Keep generating data points until the length of data vector reaches n.
  while (length(result) < n) {
    result <- c(result, filter(mu + sigma * ((1 - w) * rnorm(n) + w * rt(n, 5))))
  }
  result[1:n]
}

multimodal <- function(n, Mu, skewness = 0, tailedness = 0) {
  # Deal with the bimodal case.
  mumu <- as.numeric(Mu %*% rmultinom(n, 1, rep(1, length(Mu))))
  mumu + random_sample(n, skewness = skewness, tailedness = tailedness)
}

server.Rफ़ाइल:

library(shiny)
# Need 'ggplot2' package to get a better aesthetic effect.
library(ggplot2)

# The 'sample.R' source code is used to generate data to be plotted, based on the input skewness, 
# tailedness and modality. For more information, see the source code in 'sample.R' code.
source("sample.R")

shinyServer(function(input, output) {
  # We generate 10000 data points from the distribution which reflects the specification of skewness,
  # tailedness and modality. 
  n = 10000

  # 'scale' is a parameter that controls the skewness and tailedness.
  scale = 1000

  # The `reactive` function is a trick to accelerate the app, which enables us only generate the data
  # once to plot two plots. The generated sample was stored in the `data` object to be called later.
  data <- reactive({
    # For `Unimodal` choice, we fix the mode at 0.
    if (input$modality == "Unimodal") {mu = 0}

    # For `Bimodal` choice, we fix the two modes at -2 and 2.
    if (input$modality == "Bimodal") {mu = c(-2, 2)}

    # Details will be explained in `sample.R` file.
    sample1 <- multimodal(n, mu, skewness = scale * input$skewness, tailedness = scale * input$kurtosis)
    data.frame(x = sample1)})

  output$histogram <- renderPlot({
    # Plot the histogram.
    ggplot(data(), aes(x = x)) + 
      geom_histogram(aes(y = ..density..), binwidth = .5, colour = "black", fill = "white") + 
      xlim(-6, 6) +
      # Overlay the density curve.
      geom_density(alpha = .5, fill = "blue") + ggtitle("Histogram of Data") + 
      theme(plot.title = element_text(lineheight = .8, face = "bold"))
  })

  output$qqplot <- renderPlot({
    # Plot the QQ plot.
    ggplot(data(), aes(sample = x)) + stat_qq() + ggtitle("QQplot of Data") + 
      theme(plot.title = element_text(lineheight=.8, face = "bold"))
    })
})

अंत में, ui.Rफ़ाइल:

library(shiny)

# Define UI for application that helps students interpret the pattern of (normal) QQ plots. 
# By using this app, we can show students the different patterns of QQ plots (and the histograms,
# for completeness) for different type of data distributions. For example, left skewed heavy tailed
# data, etc. 

# This app can be (and is encouraged to be) used in a reversed way, namely, show the QQ plot to the 
# students first, then tell them based on the pattern of the QQ plot, the data is right skewed, bimodal,
# heavy-tailed, etc.


shinyUI(fluidPage(
  # Application title
  titlePanel("Interpreting Normal QQ Plots"),

  sidebarLayout(
    sidebarPanel(
      # The first slider can control the skewness of input data. "-1" indicates the most left-skewed 
      # case while "1" indicates the most right-skewed case.
      sliderInput("skewness", "Skewness", min = -1, max = 1, value = 0, step = 0.1, ticks = FALSE),

      # The second slider can control the skewness of input data. "-1" indicates the most light tail
      # case while "1" indicates the most heavy tail case.
      sliderInput("kurtosis", "Tailedness", min = -1, max = 1, value = 0, step = 0.1, ticks = FALSE),

      # This selectbox allows user to choose the number of modes of data, two options are provided:
      # "Unimodal" and "Bimodal".
      selectInput("modality", label = "Modality", 
                  choices = c("Unimodal" = "Unimodal", "Bimodal" = "Bimodal"),
                  selected = "Unimodal"),
      br(),
      # The following helper information will be shown on the user interface to give necessary
      # information to help users understand sliders.
      helpText(p("The skewness of data is controlled by moving the", strong("Skewness"), "slider,", 
               "the left side means left skewed while the right side means right skewed."), 
               p("The tailedness of data is controlled by moving the", strong("Tailedness"), "slider,", 
                 "the left side means light tailed while the right side means heavy tailedd."),
               p("The modality of data is controlledy by selecting the modality from", strong("Modality"),
                 "select box.")
               )
  ),

  # The main panel outputs two plots. One plot is the histogram of data (with the nonparamteric density
  # curve overlaid), to get a better visualization, we restricted the range of x-axis to -6 to 6 so 
  # that part of the data will not be shown when heavy-tailed input is chosen. The other plot is the 
  # QQ plot of data, as convention, the x-axis is the theoretical quantiles for standard normal distri-
  # bution and the y-axis is the sample quantiles of data. 
  mainPanel(
    plotOutput("histogram"),
    plotOutput("qqplot")
  )
)
)
)

1
ऐसा लगता है कि आपके चमकदार ऐप की क्षमता अधिकतम हो गई है। हो सकता है कि आप बस कोड प्रदान कर सकें
rsoren

1
@rsoren ने कहा, आशा है कि यह मदद करता है और मैं सुझाव सुनने के लिए उत्सुक हूं।
झांकोनियनगॉन

बहुत अच्छा! मैं नमूना आकार और यादृच्छिकता की डिग्री को बदलने के लिए विकल्पों को जोड़ने का सुझाव दूंगा।
इटमार

लिंक उपलब्ध नहीं है !!!! @Zhanxiong
अलीरज़ा सानी

ऐसा लगता है कि लिंक हर महीने सीमित संख्या में क्लिक करने के बाद प्रतिक्रिया देने में विफल रहता है। यही कारण है कि मैंने यहां स्रोत कोड चिपकाया है (जैसा कि अन्य उपयोगकर्ताओं द्वारा अनुरोध किया गया है जो आपके समान ही समस्या का सामना करते हैं)। आप उन्हें अपने आर स्टूडियो में पेस्ट कर सकते हैं और उन्हें अपने पीसी पर चला सकते हैं (आवश्यक पैकेज अग्रिम में लोड होने के बाद)।
झांकोनियनग

6

एक बहुत ही उपयोगी (और सहज) स्पष्टीकरण प्रोफेसर द्वारा दिया गया है। MIT MOOC पाठ्यक्रम में फिलिप रिगोलेट: आवेदन के लिए 18.650 सांख्यिकी, 2016 पतन - 45 मिनट पर वीडियो देखें

https://www.youtube.com/watch?v=vMaKx9fmJHE

मैंने उसके डायग्राम को बहुत अच्छे से कॉपी किया है जिसे मैं अपने नोट्स में रखता हूं क्योंकि मुझे यह बहुत उपयोगी लगता है।

QQ प्लॉट स्केच आरेख

उदाहरण 1 में, ऊपरी बाएँ चित्र में, हम देखते हैं कि दाएं पूंछ में अनुभवजन्य (या नमूना) मात्रात्मक सैद्धांतिक मात्रा से कम है

क्यू <क्यूटी

α

यहां छवि विवरण दर्ज करें


3

चूँकि इस धागे को एक निश्चित "सामान्य qq कथानक की व्याख्या कैसे करें" के रूप में समझा जाता है "StackExchange post, मैं पाठकों को सामान्य qq कथानक और अतिरिक्त कुर्तोसिस स्टेटिस्टिक के बीच एक अच्छे, सटीक गणितीय संबंध की ओर संकेत करना चाहूंगा।

यह रहा:

https://stats.stackexchange.com/a/354076/102879

एक संक्षिप्त (और बहुत सरलीकृत) सारांश इस प्रकार दिया गया है (अधिक सटीक गणितीय कथनों के लिए लिंक देखें): आप वास्तव में सामान्य qq प्लॉट में अतिरिक्त कर्टोसिस देख सकते हैं, डेटा क्वांटाइल्स और संबंधित सैद्धांतिक सामान्य क्वांटाइल्स के बीच औसत दूरी, भारित मतलब से डेटा से दूरी के द्वारा। इस प्रकार, जब qq भूखंड की पूंछ में निरपेक्ष मान आम तौर पर चरम दिशाओं में अपेक्षित सामान्य मूल्यों से विचलित होता है, तो आपके पास सकारात्मक अतिरिक्त कर्टोसिस है।

क्योंकि कर्टोसिस इन विचलन औसत से दूरी से भारित है, क्यूक भूखंड के केंद्र के पास के मूल्यों का कुर्तोसिस पर बहुत कम प्रभाव पड़ता है। इसलिए, अतिरिक्त कर्टोसिस वितरण के केंद्र से संबंधित नहीं है, जहां "शिखर" है। बल्कि, सामान्य वितरण के लिए डेटा वितरण की पूंछ की तुलना द्वारा अतिरिक्त कुर्टोसिस लगभग पूरी तरह से निर्धारित किया जाता है।

हमारी साइट का प्रयोग करके, आप स्वीकार करते हैं कि आपने हमारी Cookie Policy और निजता नीति को पढ़ और समझा लिया है।
Licensed under cc by-sa 3.0 with attribution required.