yilog(yi)
log(0)log(yi+ϵ)
Hy′(y):=−∑iy′ilog(yi)
Hy′(y):=−∑i(y′ilog(yi)+(1−y′i)log(1−yi))
(ए) मल्टी-क्लास भविष्यवाणी के लिए सही है (यह वास्तव में एक डबल समन है), (बी) दो-श्रेणी की भविष्यवाणी के लिए (ए) के समान है। दोनों क्रॉस-एंट्रोपी हैं।
उदाहरण:
xic′i∈{0,1}ci∈[0,1]
c′ici
(c′i,ci)={(0,0.1),(0,0.4),(0,0.8),(1,0.8),(1,0.2)}
y′iyi
(y′i,yi)
(y′i,yi)={([1,0],[0.9,0.1]), ([1,0],[0.6,0.4]), ([1,0],[0.2,0.8]), ([0,1],[0.2,0.8]), ([0,1],[0.8,0.2])}
दोनों (ए) और (बी) के रूप में गणना की जाती है:
Hy′(y)=−1/5([log(0.9)+log(0.6)+log(0.2)]ci=0+[log(0.8)+log(0.2)]ci=1)=0.352
व्युत्पत्ति:
1K
(xi,c′i)c′i=ky′i=[0,..,1,0,..]kthy′ik=1yik=p(k|xi)(xi,k)−log(yik)yik→1⇒−log(yik)→0
L(y′i,yi)=−∑Kk=1y′iklog(yik)
y′ik=1k′≠k0log(yik′)=0y′im=1
L(y′i,yi)=−log(yim)
सभी प्रशिक्षण बिंदुओं पर अंतिम सूत्र है:
Hy′(y)=−∑(xi,y′i)∑Kk=1y′iklog(yik)
y′i0=1−y′i1yi0=1−yi1
Hy′(y)=−∑(xi,y′i)y′i1log(yi1)+y′i0log(yi0)=−∑(xi,y′i)y′i1log(yi1)+(1−y′i1)log(1−yi1)
जो (बी) के समान है।
क्रॉस-एन्ट्रॉपी (ए) वर्गों पर (एक योग)
क्रॉस-एन्ट्रॉपी (ए) वर्गों पर है:
Hy′(y)=−∑Kk=1y′klog(yk)
इस संस्करण का उपयोग वर्गीकरण कार्य के लिए नहीं किया जा सकता है। पिछले उदाहरण से डेटा का पुन: उपयोग करें:
(c′i,ci)={(0,0.1),(0,0.4),(0,0.8),(1,0.8),(1,0.2)}
y′0=3/5=0.6y′1=0.4
y0=3/5=0.6y1=0.4
−y′0logy0−y′1logy1=−0.6log(0.6)−0.4log(0.4)=0.292
(0,0.8)(1,0.2)y′0y′1
(c′i,ci)={(0,0.1),(0,0.4),(0,0.2),(1,0.8),(1,0.8)}
y′0y0=3/5