एक फ़ंक्शन दिखाएं जो अंतरिक्ष-निर्माण योग्य है लेकिन समय-कब्जीय नहीं है।
क्या यह समस्या जटिलता वर्गों DTIME (f (n)) और SPACE (f (n)) के बीच संभावित अलगाव से संबंधित है?
एक फ़ंक्शन दिखाएं जो अंतरिक्ष-निर्माण योग्य है लेकिन समय-कब्जीय नहीं है।
क्या यह समस्या जटिलता वर्गों DTIME (f (n)) और SPACE (f (n)) के बीच संभावित अलगाव से संबंधित है?
जवाबों:
एक समारोह समय constructible अगर वहाँ एक ट्यूरिंग मशीन है एम जो, पर इनपुट 1 एन , गणना करता समारोह एक्स ↦ टी ( | x | ) समय में हे ( टी ( एन ) ) ।
एक समारोह अंतरिक्ष constructible अगर वहाँ एक ट्यूरिंग मशीन है एम जो, पर इनपुट 1 एन , समारोह की गणना करता है एक्स ↦ एस ( | x | ) अंतरिक्ष में हे ( एस ( n ) ) ।
कुछ ग्रंथों के लिए आवश्यक है कि समय / स्थान रचनात्मक कार्य गैर-घटते हुए हों। कुछ ग्रंथों समय constructible कार्यों संतुष्ट आवश्यकता , और अंतरिक्ष constructible कार्यों संतुष्ट एस ( एन ) ≥ लॉग एन । कुछ ग्रंथों में से उपयोग नहीं करते हे ( ⋅ ) परिभाषा अंकन।
वैसे भी, यह आसान पता चलता है कि हर "साधारण" समारोह है , संतोषजनक च ( एन ) ≥ लॉग n और च ( एन ) = ओ ( n ) अंतरिक्ष constructible, लेकिन नहीं समय constructible है।
जटिलता की समस्या DTIME (f (n)) और SPACE (f (n)) के बीच संभावित अलगाव से सीधे संबंधित नहीं है। हालांकि, समय और अंतरिक्ष पदानुक्रम प्रमेयों का बयान निर्माण क्षमता को शामिल करता है। उदाहरण के लिए:
देखें अरोड़ा और बराक की किताब या पापादिमित्रिउ के बारे में अधिक जानकारी के लिए। (उत्तरार्द्ध शब्द "उचित जटिलता फ़ंक्शन" का उपयोग किसी ऐसे व्यक्ति को संदर्भित करने के लिए करता है जो समय और स्थान दोनों के लिए रचनात्मक है।)