क्या


12

क्या हम यह साबित कर सकते हैं कि प्रत्येक भाषा जो कि नहीं है (यह ) , ? वैकल्पिक रूप से, क्या यह किसी भी उचित मान्यताओं के तहत सिद्ध किया जा सकता है?एन पी पीएन पी पी एलपी सैटLNPNPPNPPLPSAT


मुझे लगता है कि इस प्रश्न का एक मूर्खतापूर्ण उत्तर है: , तो निश्चित रूप से एक बार जब आप मान लें कि । तो आप चाहते हैं, अभी भी , को in और not । [संपादित करें: ओह, मैंने आपकी टिप्पणी नीचे पढ़ी है, इसलिए आपका प्रश्न प्रतीत होता है: "क्या यह सच है कि ऐसे सभी , असमानता होती है?", बजाय "क्या ऐसे मौजूद है ?" => मैं आपके प्रश्न को संपादित करता हूं!]पी एलपी सैट पीएन पी पीएन पी एल एन पीपी एन पी एल एलLPNPPLPSATPNPPNPLNPPNPLL
ब्रूनो

जवाबों:


16

एनपीआई की आपकी परिभाषा पर निर्भर करता है। यदि ए ट्यूरिंग कटौती के लिए अपूर्ण है, तो इसका उत्तर हां में है क्योंकि एसएटी में नहीं है ।PA

यदि A केवल कई-एक अपूर्ण है तो हम यह नहीं जानते कि इसे कैसे सिद्ध किया जाए। हमारे पास एक relativized दुनिया है जिसमें NP में A सेट है जैसे कि A, कई-एक कटौती के माध्यम से NP-पूर्ण नहीं है, लेकिन SAT को एक ही क्वेरी से A. (Theorem 1.9 इस पेपर में ) द्वारा गणना की जा सकती है ।


क्या आपका मतलब प्रमेय 1.9 है?
जेफ्री इरविंग

तुम सही हो। फिक्स्ड।
लांस फोर्टनॉ
हमारी साइट का प्रयोग करके, आप स्वीकार करते हैं कि आपने हमारी Cookie Policy और निजता नीति को पढ़ और समझा लिया है।
Licensed under cc by-sa 3.0 with attribution required.