भविष्यवाणियों में तंत्रिका नेटवर्क कितना अच्छा बनाता है?


12

मैं तंत्रिका-नेटवर्क के लिए नया हूं और मैं गणितीय रूप से यह समझने की कोशिश कर रहा हूं कि वर्गीकरण समस्याओं में तंत्रिका नेटवर्क कितना अच्छा है।

एक छोटे तंत्रिका नेटवर्क का उदाहरण लेते हुए (उदाहरण के लिए, 2 इनपुट के साथ एक, एक छिपे हुए परत में 2 नोड्स और आउटपुट के लिए 2 नोड्स), आपके पास आउटपुट पर एक जटिल कार्य है जो एक रैखिक संयोजन पर ज्यादातर सिग्मोइड है सिग्माइड का।

तो, यह भविष्यवाणी में उन्हें अच्छा कैसे बनाता है? क्या अंतिम फ़ंक्शन किसी प्रकार की वक्र फिटिंग की ओर जाता है?

जवाबों:


6

तंत्रिका नेटवर्क वर्गीकृत करने में अच्छे हैं। कुछ स्थितियों में जो भविष्यवाणी करने के लिए नीचे आती हैं, लेकिन जरूरी नहीं।

तंत्रिका नेटवर्क के वर्गीकरण के लिए गणितीय कारण सार्वभौमिक सन्निकटन प्रमेय है । जो बताता है कि एक तंत्रिका नेटवर्क एक कॉम्पैक्ट उपसमुच्चय पर किसी भी निरंतर वास्तविक-मूल्यवान फ़ंक्शन का अनुमान लगा सकता है। सन्निकटन की गुणवत्ता न्यूरॉन्स की संख्या पर निर्भर करती है। यह भी दिखाया गया है कि मौजूदा परतों में जोड़ने के बजाय अतिरिक्त परतों में न्यूरॉन्स को जोड़ने से सन्निकटन की गुणवत्ता में तेजी से सुधार होता है।

इसमें जोड़ें कि बैकप्रॉपैगमेंट एल्गोरिथ्म की अच्छी तरह से समझी गई प्रभावशीलता नहीं है और आपके पास एक सेटअप है तो वास्तव में उस फ़ंक्शन को सीख सकते हैं जो यूएटी का वादा करता है या कुछ करीब है।


0

तंत्रिका नेटवर्क में हम उच्च आयाम में सब कुछ पर विचार करते हैं और एक हाइपरप्लेन खोजने की कोशिश करते हैं जो उन्हें छोटे परिवर्तनों द्वारा वर्गीकृत करता है ...

संभवतः यह साबित करना कठिन है कि यह काम करता है लेकिन अंतर्ज्ञान कहता है कि अगर इसे वर्गीकृत किया जा सकता है तो आप इसे एक आराम से विमान जोड़कर कर सकते हैं और इसे स्थानीय इष्टतम को खोजने के लिए डेटा के बीच ले जा सकते हैं ...


0

तंत्रिका नेटवर्क के साथ आप केवल डेटा को वर्गीकृत करते हैं। यदि आप सही तरीके से वर्गीकृत करते हैं, तो आप भविष्य के वर्गीकरण कर सकते हैं।

यह काम किस प्रकार करता है?

Perceptron जैसे सरल तंत्रिका नेटवर्क, डेटा को वर्गीकृत करने के लिए एक निर्णय सीमा खींच सकते हैं ।

उदाहरण के लिए मान लीजिए कि आप साधारण तंत्रिका नेटवर्क के साथ सरल और समस्या को हल करना चाहते हैं। आपके पास X1 और x2 वाले 4 सैंपल डेटा और w1 और w2 वाले वेट वेक्टर हैं। मान लें कि प्रारंभिक वजन वेक्टर [0 0] है। यदि आपने गणना की है जो एनएन अल्गोरिटम पर निर्भर है। अंत में, आपके पास एक वजन वेक्टर [1 1] या ऐसा कुछ होना चाहिए।

यहाँ छवि विवरण दर्ज करें

कृपया ग्राफिक पर ध्यान दें।

यह कहता है: मैं इनपुट मानों को दो वर्गों (0 और 1) में वर्गीकृत कर सकता हूं। ठीक है। फिर मैं यह कैसे कर सकता हूं? यह बहुत आसान है। पहला योग इनपुट मान (X1 और x2)।

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 2

इसे कहते हैं:

यदि योग <1.5 है तो इसका वर्ग 0 है

यदि योग> १.५ है तो उसका वर्ग १ है


0

तंत्रिका नेटवर्क विभिन्न प्रकार के कार्यों में उत्कृष्टता प्राप्त करते हैं, लेकिन वास्तव में क्यों की समझ प्राप्त करने के लिए, वर्गीकरण जैसे विशेष कार्य को लेना आसान हो सकता है और गहरा गोता लगा सकता है।

सरल शब्दों में, मशीन लर्निंग तकनीक पिछले उदाहरणों के आधार पर यह अनुमान लगाने के लिए एक फ़ंक्शन सीखती है कि कोई विशेष इनपुट किस वर्ग का है। तंत्रिका जाल को अलग करता है इन कार्यों को बनाने की उनकी क्षमता है जो डेटा में भी जटिल पैटर्न की व्याख्या कर सकते हैं। एक तंत्रिका नेटवर्क का दिल रेल्यू की तरह एक सक्रियण फ़ंक्शन है, जो इसे कुछ बुनियादी वर्गीकरण सीमाओं को आकर्षित करने की अनुमति देता है जैसे:Relu के लिए उदाहरण वर्गीकरण की सीमाएँ

इस तरह के सैकड़ों रिले को एक साथ जोड़कर, तंत्रिका नेटवर्क मनमाने ढंग से जटिल वर्गीकरण सीमाएँ बना सकते हैं, उदाहरण के लिए:यहाँ छवि विवरण दर्ज करें

इस लेख में, मैं तंत्रिका नेटवर्क के काम करने के पीछे के अंतर्ज्ञान को समझाने की कोशिश करता हूं: https://medium.com/machine-intelligence-report/how-do-neural-networks-work-57d1ab5337ce

हमारी साइट का प्रयोग करके, आप स्वीकार करते हैं कि आपने हमारी Cookie Policy और निजता नीति को पढ़ और समझा लिया है।
Licensed under cc by-sa 3.0 with attribution required.