और β संबंधित हैं। मैं नैदानिक परीक्षण के साथ बिंदु को स्पष्ट करने की कोशिश करूंगा। मान लीजिए कि आपके पास एक नैदानिक परीक्षण है जो रक्त मार्कर के स्तर को मापता है। यह ज्ञात है कि एक निश्चित बीमारी वाले लोगों में स्वस्थ लोगों की तुलना में इस मार्कर का स्तर कम होता है। यह तुरंत स्पष्ट है कि आपको एक कटऑफ मूल्य तय करना होगा, जिसके नीचे एक व्यक्ति को "बीमार" के रूप में वर्गीकृत किया गया है, जबकि इस कटऑफ से ऊपर के मूल्यों वाले लोगों को स्वस्थ माना जाता है। यह बहुत संभावना है, हालांकि, रक्तदाता का वितरणबीमार और स्वस्थ लोगों केभीतरभी काफी भिन्न होता है। कुछ स्वस्थ व्यक्तियों में बहुत कम रक्त मार्कर स्तर हो सकते हैं, भले ही वे पूरी तरह से स्वस्थ हों। और कुछ बीमार लोगों में बीमारी होने के बावजूद भी रक्त में उच्च स्तर होता है।αβ
चार कब्बाइलाइट्स हो सकते हैं:
- एक बीमार व्यक्ति को सही रूप में बीमार के रूप में पहचाना जाता है (सही सकारात्मक = टीपी)
- एक बीमार व्यक्ति को गलत तरीके से स्वस्थ (झूठे नकारात्मक = FN) के रूप में वर्गीकृत किया जाता है
- एक स्वस्थ व्यक्ति को स्वस्थ रूप से पहचाना जाता है (सच्चा नकारात्मक = TN)
- एक स्वस्थ व्यक्ति को गलत तरीके से बीमार (झूठे सकारात्मक = FP) के रूप में वर्गीकृत किया जाता है
इन संभावनाओं को 2x2 तालिका के साथ चित्रित किया जा सकता है :
Sick Healthy
Test positive TP FP
Test negative FN TN
αα = एफपी/ (एफपी+ टीएन)ββ= एफएन/ (टीपी+ एफएन)R
alphabeta <- function(mean.sick=100, sd.sick=10, mean.healthy=130, sd.healthy=10, cutoff=120, n=10000, side="below", do.plot=TRUE) {
popsick <- rnorm(n, mean=mean.sick, sd=sd.sick)
pophealthy <- rnorm(n, mean=mean.healthy, sd=sd.healthy)
if ( side == "below" ) {
truepos <- length(popsick[popsick <= cutoff])
falsepos <- length(pophealthy[pophealthy <= cutoff])
trueneg <- length(pophealthy[pophealthy > cutoff])
falseneg <- length(popsick[popsick > cutoff])
} else if ( side == "above" ) {
truepos <- length(popsick[popsick >= cutoff])
falsepos <- length(pophealthy[pophealthy >= cutoff])
trueneg <- length(pophealthy[pophealthy < cutoff])
falseneg <- length(popsick[popsick < cutoff])
}
twotable <- matrix(c(truepos, falsepos, falseneg, trueneg), 2, 2, byrow=T)
rownames(twotable) <- c("Test positive", "Test negative")
colnames(twotable) <- c("Sick", "Healthy")
spec <- twotable[2,2]/(twotable[2,2] + twotable[1,2])
alpha <- 1 - spec
sens <- pow <- twotable[1,1]/(twotable[1,1] + twotable[2,1])
beta <- 1 - sens
pos.pred <- twotable[1,1]/(twotable[1,1] + twotable[1,2])
neg.pred <- twotable[2,2]/(twotable[2,2] + twotable[2,1])
if ( do.plot == TRUE ) {
dsick <- density(popsick)
dhealthy <- density(pophealthy)
par(mar=c(5.5, 4, 0.5, 0.5))
plot(range(c(dsick$x, dhealthy$x)), range(c(c(dsick$y, dhealthy$y))), type = "n", xlab="", ylab="", axes=FALSE)
box()
axis(1, at=mean(pophealthy), lab=substitute(mu[H[0]]~paste("=",m, sep=""), list(m=mean.healthy)), cex.axis=1.5,tck=0.02)
axis(1, at=mean(popsick), lab=substitute(mu[H[1]]~paste("=",m, sep=""), list(m=mean.sick)), cex.axis=1.5, tck=0.02)
axis(1, at=cutoff, lab=substitute(italic(paste("Cutoff=",coff, sep="")), list(coff=cutoff)), pos=-0.004, tick=FALSE, cex.axis=1.25)
lines(dhealthy, col = "steelblue", lwd=2)
if ( side == "below" ) {
polygon(c(cutoff, dhealthy$x[dhealthy$x<=cutoff], cutoff), c(0, dhealthy$y[dhealthy$x<=cutoff],0), col = "grey65")
} else if ( side == "above" ) {
polygon(c(cutoff, dhealthy$x[dhealthy$x>=cutoff], cutoff), c(0, dhealthy$y[dhealthy$x>=cutoff],0), col = "grey65")
}
lines(dsick, col = "red", lwd=2)
if ( side == "below" ) {
polygon(c(cutoff,dsick$x[dsick$x>cutoff],cutoff),c(0,dsick$y[dsick$x>cutoff],0) , col="grey90")
} else if ( side == "above" ) {
polygon(c(cutoff,dsick$x[dsick$x<=cutoff],cutoff),c(0,dsick$y[dsick$x<=cutoff],0) , col="grey90")
}
legend("topleft",
legend=(c(as.expression(substitute(alpha~paste("=", a), list(a=round(alpha,3)))),
as.expression(substitute(beta~paste("=", b), list(b=round(beta,3)))))), fill=c("grey65", "grey90"), cex=1.2, bty="n")
abline(v=mean(popsick), lty=3)
abline(v=mean(pophealthy), lty=3)
abline(v=cutoff, lty=1, lwd=1.5)
abline(h=0)
}
#list(specificity=spec, sensitivity=sens, alpha=alpha, beta=beta, power=pow, positiv.predictive=pos.pred, negative.predictive=neg.pred)
c(alpha, beta)
}
आइए एक उदाहरण देखें। हम मानते हैं कि बीमार लोगों के बीच रक्त मार्कर का औसत स्तर 10. के मानक विचलन के साथ 100 है। स्वस्थ लोगों में, औसत रक्त स्तर 140 के मानक विचलन के साथ 140 है। चिकित्सक 120 पर कटऑफ निर्धारित करता है।
alphabeta(mean.sick=100, sd.sick=10, mean.healthy=140, sd.healthy=15, cutoff=120, n=100000, do.plot=TRUE, side="below")
Sick Healthy
Test positive 9764 901
Test negative 236 9099
α = 901 / ( 901 + 9099 ) ≈ 0.09β= 236 / ( 236 + 9764 ) ≈ 0.024
Sick Healthy
Test positive 6909 90
Test negative 3091 9910
αβ
αβ
cutoffs <- seq(0, 200, by=0.1)
cutoff.grid <- expand.grid(cutoffs)
plot.frame <- apply(cutoff.grid, MARGIN=1, FUN=alphabeta, mean.sick=100, sd.sick=10, mean.healthy=140, sd.healthy=15, n=100000, do.plot=FALSE, side="below")
plot(plot.frame[1,]~cutoffs, type="l", las=1, xlab="Cutoff value", ylab="Alpha/Beta", lwd=2, cex.axis=1.5, cex.lab=1.2)
lines(plot.frame[2,]~cutoffs, col="steelblue", lty=2, lwd=2)
legend("topleft", legend=c(expression(alpha), expression(beta)), lwd=c(2,2),lty=c(1,2), col=c("black", "steelblue"), bty="n", cex=1.2)
αβ
यहां हमारे पास "पूर्ण" परीक्षण इस अर्थ में है कि 150 का कटऑफ बीमार को स्वस्थ से अलग करता है।
बोनफर्रोनी समायोजन
αββ0.020.31α0.090.01