@Gung द्वारा उत्तर चार्ट प्रकार की पहचान करने और Excel में लागू करने के लिए एक लिंक प्रदान करने में सही है, जैसा कि ओपी द्वारा अनुरोध किया गया है। लेकिन दूसरों के लिए यह जानना चाहते हैं कि यह कैसे करना है R / tidyverse / ggplot में, नीचे पूरा कोड है:
library(dplyr) # for data manipulation
library(tidyr) # for reshaping the data frame
library(stringr) # string manipulation
library(ggplot2) # graphing
# create the data frame
# (in wide format, as needed for the line segments):
dat_wide = tibble::tribble(
~Country, ~Y1990, ~Y2015,
'Russia', 71.5, 101.4,
'Canada', 74.4, 102.9,
'Other non-OECD Europe/Eurasia', 60.9, 135.2,
'South Korea', 127, 136.2,
'China', 58.5, 137.1,
'Middle East', 170.9, 158.8,
'United States', 106.8, 169,
'Australia/New Zealand', 123.6, 170.9,
'Brazil', 208.5, 199.8,
'Japan', 181, 216.7,
'Africa', 185.4, 222,
'Other non-OECD Asia', 202.7, 236,
'OECD Europe', 173.8, 239.9,
'Other non-OECD Americas', 193.1, 242.3,
'India', 173.8, 260.6,
'Mexico/Chile', 221.1, 269.8
)
# a version reshaped to long format (for the points):
dat_long = dat_wide %>%
gather(key = 'Year', value = 'Energy_productivity', Y1990:Y2015) %>%
mutate(Year = str_replace(Year, 'Y', ''))
# create the graph:
ggplot() +
geom_segment(data = dat_wide,
aes(x = Y1990,
xend = Y2015,
y = reorder(Country, Y2015),
yend = reorder(Country, Y2015)),
size = 3, colour = '#D0D0D0') +
geom_point(data = dat_long,
aes(x = Energy_productivity,
y = Country,
colour = Year),
size = 4) +
labs(title = 'Energy productivity in selected countries \nand regions',
subtitle = 'Billion dollars GDP per quadrillion BTU',
caption = 'Source: EIA, 2016',
x = NULL, y = NULL) +
scale_colour_manual(values = c('#1082CD', '#042B41')) +
theme_bw() +
theme(legend.position = c(0.92, 0.20),
legend.title = element_blank(),
legend.box.background = element_rect(colour = 'black'),
panel.border = element_blank(),
axis.ticks = element_line(colour = '#E6E6E6'))
ggsave('energy.png', width = 20, height = 10, units = 'cm')
यह मूल्य लेबल जोड़ने और एक मामले के रंग को उजागर करने के लिए बढ़ाया जा सकता है जहां मूल रूप में मान स्वैप आदेश देते हैं।