इसमें एक दृश्य व्याख्या जोड़ने के लिए: आइए कुछ बिंदुओं पर विचार करें जिन्हें आप मॉडल करने की योजना बनाते हैं।
उन्हें लगता है कि उन्हें एक सीधी रेखा के साथ अच्छी तरह से वर्णित किया जा सकता है, इसलिए आप उनके लिए एक रेखीय प्रतिगमन फिट करते हैं:
यह प्रतिगमन रेखा आपको दोनों को प्रक्षेपित करने देती है (आपके डेटा बिंदुओं के बीच अपेक्षित मान उत्पन्न करती है) और अतिरिक्त रूप से उत्पन्न करती है (आपके डेटा बिंदुओं की सीमा के बाहर अपेक्षित मान उत्पन्न करती है)। मैंने लाल रंग में एक्सट्रपलेशन और नीले रंग में इंटरपोलेशन के सबसे बड़े क्षेत्र पर प्रकाश डाला है। स्पष्ट होने के लिए, यहां तक कि बिंदुओं के बीच के छोटे क्षेत्रों को भी प्रक्षेपित किया जाता है, लेकिन मैं केवल यहां बड़े पर प्रकाश डाल रहा हूं।
अतिरिक्त चिंता आम तौर पर एक चिंता का विषय क्यों है? क्योंकि आप आमतौर पर अपने डेटा की सीमा के बाहर संबंध के आकार के बारे में बहुत कम निश्चित हैं। विचार करें कि जब आप कुछ और डेटा पॉइंट (खोखले वृत्त) एकत्रित करते हैं तो क्या हो सकता है:
यह पता चला है कि रिश्ते को अपने परिकल्पित रिश्ते के साथ अच्छी तरह से कब्जा नहीं किया गया था। अतिरिक्त क्षेत्र में भविष्यवाणियां रास्ता बंद हैं। यहां तक कि अगर आपने सटीक फ़ंक्शन का अनुमान लगाया था जो इस nonlinear संबंध का सही ढंग से वर्णन करता है, तो आपके डेटा ने आपके द्वारा nonlinearity को अच्छी तरह से कैप्चर करने के लिए पर्याप्त सीमा तक विस्तारित नहीं किया था, इसलिए आप अभी भी बहुत दूर हो सकते हैं। ध्यान दें कि यह न केवल रैखिक प्रतिगमन के लिए एक समस्या है, बल्कि किसी भी रिश्ते के लिए - यही कारण है कि एक्सट्रपलेशन खतरनाक माना जाता है।
फिट नहीं होने की वजह से प्रक्षेपित क्षेत्र में भविष्यवाणियां भी गलत हैं, लेकिन उनकी भविष्यवाणी में त्रुटि बहुत कम है। इस बात की कोई गारंटी नहीं है कि आपके बिंदुओं (यानी प्रक्षेप का क्षेत्र) के बीच अप्रत्याशित संबंध नहीं होगा, लेकिन यह आमतौर पर कम संभावना है।
मैं जोड़ूंगा कि एक्सट्रपलेशन हमेशा एक भयानक विचार नहीं है - यदि आप अपने डेटा की सीमा के बाहर एक छोटे से बिट को एक्सट्रपलेशन करते हैं, तो आप शायद बहुत गलत नहीं होंगे (हालांकि यह संभव है!)। जिन पूर्वजों का दुनिया का कोई अच्छा वैज्ञानिक मॉडल नहीं था, अगर वे पूर्वानुमान लगाते कि सूर्य अगले दिन और फिर उसके अगले दिन (हालांकि भविष्य में एक दिन भी विफल हो जाएगा) तो यह गलत नहीं होगा।
और कभी-कभी, एक्सट्रपलेशन भी जानकारीपूर्ण हो सकता है - उदाहरण के लिए, वायुमंडलीय सीओ में घातीय वृद्धि के साधारण अल्पकालिक एक्सट्रपलेशन पिछले कुछ दशकों में यथोचित रूप से सटीक हैं। यदि आप एक ऐसे छात्र थे, जिनके पास वैज्ञानिक विशेषज्ञता नहीं थी, लेकिन वे एक कठिन, अल्पकालिक पूर्वानुमान चाहते थे, तो इससे आपको काफी उचित परिणाम प्राप्त होते थे। लेकिन आपके डेटा से आप जितना दूर एक्सट्रपलेट करते हैं, उतनी ही संभावना है कि आपकी भविष्यवाणी विफल होने की संभावना है, और विनाशकारी रूप से विफल हो, जैसा कि इस महान धागे में बहुत अच्छी तरह से वर्णित है: एक्सट्रपलेशन के साथ क्या गलत है? (मुझे याद दिलाने के लिए @JMisnotastatistician का धन्यवाद)।2
टिप्पणियों के आधार पर संपादित करें: चाहे इंटरपोलिंग हो या एक्सट्रपॉलिंग, हमेशा जमीनी उम्मीदों के लिए कुछ सिद्धांत रखना सबसे अच्छा होता है। यदि सिद्धांत-मुक्त मॉडलिंग की जानी चाहिए, तो प्रक्षेप से जोखिम आमतौर पर एक्सट्रपलेशन से कम होता है। उन्होंने कहा कि जैसे-जैसे डेटा पॉइंट्स के बीच अंतर बढ़ता जाता है, इंटरपोल भी अधिक से अधिक जोखिम से भरा होता जाता है।