यह अनुचित स्कोरिंग नियम का उपयोग करने के लिए उपयुक्त है जब उद्देश्य वास्तव में पूर्वानुमान है, लेकिन अनुमान नहीं है। मुझे वास्तव में परवाह नहीं है कि एक और भविष्यद्रोही धोखा दे रहा है या नहीं जब मैं वह हूं जो पूर्वानुमान लगाने जा रहा हूं।
उचित स्कोरिंग नियम यह सुनिश्चित करते हैं कि आकलन प्रक्रिया के दौरान मॉडल सही डेटा जनरेट करने की प्रक्रिया (DGP) के पास जाए। यह आशाजनक लगता है क्योंकि जैसे-जैसे हम सच्चे DGP से संपर्क करेंगे हम किसी भी नुकसान के कार्य के पूर्वानुमान के संदर्भ में भी अच्छा करेंगे। पकड़ यह है कि ज्यादातर समय (वास्तव में वास्तव में लगभग हमेशा) हमारे मॉडल खोज स्थान में सही DGP नहीं होता है। हम अंत में कुछ कार्यात्मक रूप के साथ सच्चे DGP का अनुमान लगाते हैं जो हम प्रस्तावित करते हैं।
इस अधिक यथार्थवादी सेटिंग में, यदि हमारा पूर्वानुमान कार्य वास्तविक DGP के संपूर्ण घनत्व का पता लगाने की तुलना में आसान है, तो हम वास्तव में बेहतर कर सकते हैं। यह विशेष रूप से वर्गीकरण के लिए सच है। उदाहरण के लिए सही DGP बहुत जटिल हो सकता है लेकिन वर्गीकरण कार्य बहुत आसान हो सकता है।
यारोस्लाव बुलटोव ने अपने ब्लॉग में निम्नलिखित उदाहरण दिया:
http://yaroslavvb.blogspot.ro/2007/06/log-loss-or-hinge-loss.html
जैसा कि आप नीचे देख सकते हैं कि असली घनत्व विगली है लेकिन दो वर्गों में इसके द्वारा उत्पन्न डेटा को अलग करने के लिए एक क्लासिफायरियर बनाना बहुत आसान है। बस अगरx ≥ 0x < ०
ऊपर दिए गए सटीक घनत्व के मिलान के बजाय हम नीचे के कच्चे मॉडल का प्रस्ताव करते हैं, जो कि सच्चे डीजीपी से काफी दूर है। हालांकि यह सही वर्गीकरण करता है। यह काज हानि का उपयोग करके पाया जाता है, जो उचित नहीं है।
दूसरी तरफ अगर आप लॉग-लॉस (जो कि उचित है) के साथ सही DGP को खोजने का निर्णय लेते हैं तो आप कुछ फंक्शन्स को फील करना शुरू कर देते हैं, क्योंकि आपको नहीं पता कि आपको फंक्शनल फंक्शनल फॉर्म की क्या जरूरत है। लेकिन जैसा कि आप इसे मैच करने के लिए कठिन और कठिन प्रयास करते हैं, आप चीजों को गलत तरीके से बदलना शुरू करते हैं।
ध्यान दें कि दोनों मामलों में हमने एक ही कार्यात्मक रूप का उपयोग किया है। अनुचित नुकसान के मामले में, यह एक कदम समारोह में बदल गया, जिसने बदले में सही वर्गीकरण किया। उचित मामले में यह घनत्व के प्रत्येक क्षेत्र को संतुष्ट करने की कोशिश कर रहा है।
मूल रूप से सटीक पूर्वानुमान लगाने के लिए हमें हमेशा सही मॉडल प्राप्त करने की आवश्यकता नहीं होती है। या कभी-कभी हमें वास्तव में घनत्व के पूरे डोमेन पर अच्छा करने की आवश्यकता नहीं होती है, लेकिन इसके कुछ हिस्सों पर ही बहुत अच्छा होना चाहिए।