फूरियर रूपांतरण के सिद्धांत पर इस साइट (eletronics.se) पर कुछ उत्कृष्ट चर्चा सूत्र और उत्तर हैं । मैंने एक सिमुलेशन टूल (MS Excel :)) में समान लागू करने का प्रयास किया।
मेरे पास उसी के संबंध में कुछ व्याख्या और कार्यान्वयन के मुद्दे हैं। मैं 50 हर्ट्ज के वोल्टेज तरंग का विश्लेषण करने की कोशिश कर रहा हूं। हालाँकि, नीचे दिया गया डेटा केवल डमी डेटा उत्पन्न करने के लिए आ मेमोरी और प्रोसेसिंग पॉवर पर कार्यान्वयन के लिए एक वैचारिक ढांचा स्थापित करने की कोशिश कर रहा है, जिसमें 16 बिट एंबेडेड लो कॉस्ट प्रोसेसर की कमी है।
ETA (30,2012 मई)
TL; DR संस्करण:
यह Electronics.se पर बिना कहे चला गया, लेकिन मैं एक मेमोरी और प्रोसेसिंग पावर का उपयोग कर रहा हूं जो एम्बेडेड प्रोसेसर को बाधित करता है।
यहाँ कुछ प्रश्न हैं जो अभी भी अनुत्तरित हैं:
- एल्गोरिथ्म की मेमोरी फ़ुटप्रिंट को बढ़ाए बिना मेरे द्वारा किए गए नमूनों पर कैसे प्रदर्शन किया जाता है? जैसा कि मैं DSP के लिए बहुत नया हूँ, मैं कदम से वर्णन करके एक मूल कदम होना चाहूँगा।
- जब मैं 32 व्युत्पन्न करने के लिए 41 नमूनों को प्रक्षेपित करता था, तो परिमाण को आधा क्यों किया गया था, लेकिन जब वे 64 को प्राप्त करने के लिए मैंने उन्हें प्रक्षेपित किया तो वे (कुछ शोर को छोड़कर) थे?
मैं इस उम्मीद के साथ सवाल पर एक इनाम की घोषणा कर रहा हूं कि मुझे कुछ उत्कृष्ट उत्तर मिले हैं जो डीएसपी में एक नौसिखिए के लिए कार्रवाई योग्य हैं।
प्रयोग 1:
समय डोमेन इनपुट
मैं साइन वेव उपयोग करते हुए उत्पन्न 64 नमूने उत्पन्न करने के लिए। मैंने फिर 30% 3 आर डी हार्मोनिक्स, 20% 5 टी एच हार्मोनिक्स, 15% 7 टी एच हार्मोनिक्स, 10% 9 टी एच हार्मोनिक, और 20% 11 टी एच हार्मोनिक्स जोड़ा । इसके चलते ये नमूने ले लिए गए:
0, 0.628226182, 0.939545557, 0.881049194, 0.678981464, 0.602991986, 0.719974543,
0.873221372, 0.883883476, 0.749800373, 0.636575155, 0.685547957, 0.855268479,
0.967780108, 0.904799909, 0.737695292, 0.65, 0.737695292, 0.904799909, 0.967780108,
0.855268479, 0.685547957, 0.636575155, 0.749800373, 0.883883476, 0.873221372,
0.719974543, 0.602991986, 0.678981464, 0.881049194, 0.939545557, 0.628226182, 0,
-0.628226182, -0.939545557, -0.881049194, -0.678981464, -0.602991986, -0.719974543,
-0.873221372, -0.883883476, -0.749800373, -0.636575155, -0.685547957, -0.855268479,
-0.967780108, -0.904799909, -0.737695292, -0.65, -0.737695292, -0.904799909,
-0.967780108, -0.855268479, -0.685547957, -0.636575155, -0.749800373, -0.883883476,
-0.873221372, -0.719974543, -0.602991986, -0.678981464, -0.881049194, -0.939545557,
-0.628226182
और यह तरंग:
मैंने एक रेडिक्स 2 एल्गोरिथ्म पर आधारित इन नमूनों का डीएफटी लिया और इन मूल्यों को प्राप्त किया:
0, -32i, 0, -9.59999999999999i, 0, -6.4i, 0, -4.79999999999999i, 0, -3.20000000000001i,
0, -6.4i, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6.4i, 0, 3.19999999999999i, 0, 4.8i, 0,
6.4i, 0, 9.60000000000001i, 0, 32i
मौलिक (2 मान) के अनुपात के रूप में ऊपर जटिल संख्याओं के पूर्ण मूल्यों को लेना और चरण की जानकारी (यदि कोई थी) की अनदेखी करना, मुझे इंजेक्शन के समान हार्मोनिक घटकों के परिमाण प्राप्त हुए।
फ़्रिक्वेंसी डोमेन प्रतिनिधित्व
अब तक सब ठीक है।
प्रयोग 2:
समय डोमेन इनपुट
मैं का उपयोग कर साइन वेव फिर से उत्पन्न 64 नमूने उत्पन्न करने के लिए। 41 क्यों? क्योंकि वास्तविक क्रियान्वयन में, मेरे माइक्रोकंट्रोलर्स एडीसी के कई बाहरी थरथरानवाला के नमूने लेते हैं, और मेरे पास केवल कुछ ही प्रकार के क्रिस्टल उपलब्ध हैं। मैंने फिर 30% 3 आर डी हार्मोनिक्स, 20% 5 टी एच हार्मोनिक्स, 15% 7 टी एच जोड़ा
0, 0.853079823, 0.857877516, 0.603896038, 0.762429734, 0.896260999, 0.695656841,
0.676188057, 0.928419527, 0.897723205, 0.664562475, 0.765676034, 0.968738879,
0.802820512, 0.632264626, 0.814329015, 0.875637458, 0.639141079, 0.696479632,
0.954031849, 0.50925641, -0.50925641, -0.954031849, -0.696479632, -0.639141079,
-0.875637458, -0.814329015, -0.632264626, -0.802820512, -0.968738879, -0.765676034,
-0.664562475, -0.897723205, -0.928419527, -0.676188057, -0.695656841, -0.896260999,
-0.762429734, -0.603896038, -0.857877516, -0.853079823, -6.87889E-15, 0.853079823,
0.857877516, 0.603896038, 0.762429734, 0.896260999, 0.695656841, 0.676188057,
0.928419527, 0.897723205, 0.664562475, 0.765676034, 0.968738879, 0.802820512,
0.632264626, 0.814329015, 0.875637458, 0.639141079, 0.696479632, 0.954031849,
0.50925641, -0.50925641, -0.954031849
और यह तरंग:
मैंने एक रेडिक्स 2 एल्गोरिथ्म पर आधारित इन नमूनों का डीएफटी लिया और इन मूल्यों को प्राप्त किया:
14.03118145099, 22.8331789450432+2.81923657448236i, -17.9313890484703-4.4853739490832i,
-2.54294462900052-0.971245447370764i, 1.74202662319821+0.944780377248239i,
-7.2622766435314-5.09627264287862i, -1.5480700475686-1.37872970296476i,
-0.136588568631116-0.126111953353714i, -3.99554928315394-5.93646306363598i,
-0.840633449276516-1.60987487366169i, -0.373838501691708-0.955596009389976i,
-1.326751987645-5.7574455633693i, -0.168983464443025-1.34797078005724i,
-9.49818315071085E-003-1.20377723286595i, 0.571706242298176-4.14055455367115i,
0.192891008647316-0.865793520825366i, 0.457088076063747-1.22893647561869i,
3.15565897700047-5.67394957744733i, -0.573520124828716+0.682717512668197i,
-0.20041207669728+0.127925509089274i, -7.95516670999013E-002-1.22174958722397E-002i,
-1.57510358481328E-002-6.44533006507588E-002i, 2.50067192003906E-002-8.46645685508359E-
002i, 5.3665806842526E-002-9.01867018999554E-002i, 7.49143167927897E-002-
8.80550417489663E-002i, 9.11355142202819E-002-8.16075816185574E-002i,
0.103685444073525-7.25978085593222E-002i, 0.11339684328631-6.20147712757682E-002i,
0.120807189654211-5.04466357453455E-002i, 0.126272708495893-3.82586162066316E-002i,
0.130029552904267-2.56872914345987E-002i, 0.132228055573542-1.28943815159261E-002i,
0.1329519244939, 0.132228055573544+1.28943815159441E-002i,
0.130029552904267+2.56872914345769E-002i, 0.126272708495892+3.82586162066264E-002i,
0.12080718965421+5.04466357453468E-002i, 0.113396843286315+6.20147712757588E-002i,
0.103685444073529+7.25978085593135E-002i, 9.11355142202805E-002+8.16075816185583E-002i,
7.4914316792795E-002+8.80550417489592E-002i, 5.36658068425271E-002+9.01867018999563E-
002i, 2.50067192003947E-002+8.46645685508275E-002i, -1.57510358481296E-
002+6.44533006507526E-002i, -7.95516670999005E-002+1.22174958722402E-002i,
-0.20041207669728-0.127925509089278i, -0.573520124828709-0.682717512668206i,
3.15565897700049+5.67394957744733i, 0.45708807606375+1.22893647561869i,
0.192891008647318+0.865793520825373i, 0.571706242298199+4.14055455367114i,
-9.49818315070294E-003+1.20377723286595i, -0.168983464443023+1.34797078005724i,
-1.32675198764498+5.75744556336931i, -0.373838501691692+0.955596009389972i,
-0.840633449276515+1.6098748736617i, -3.99554928315393+5.93646306363599i,
-0.136588568631125+0.126111953353722i, -1.54807004756858+1.37872970296476i,
-7.26227664353139+5.09627264287866i, 1.7420266231982-0.944780377248243i,
-2.54294462900053+0.971245447370785i, -17.9313890484703+4.48537394908326i,
22.8331789450432-2.81923657448243i
फ़्रिक्वेंसी डोमेन प्रतिनिधित्व
ऊपर दी गई जटिल संख्याओं के परिमाण से कुछ भी प्रकट नहीं होता है, जिसे मैं समय डोमेन में अंतःस्थापित मानों में वापस कर सकता हूं।
प्रयोग ३
समय डोमेन इनपुट:
मैंने अब उसी तरंग को लिया और शून्य को गद्देदार कर दिया अर्थात सभी नमूनों को ४१ से शून्य तक सेट कर दिया। तो निम्नलिखित समय डोमेन इनपुट है:
0, 0.853079823, 0.857877516, 0.603896038, 0.762429734, 0.896260999, 0.695656841,
0.676188057, 0.928419527, 0.897723205, 0.664562475, 0.765676034, 0.968738879,
0.802820512, 0.632264626, 0.814329015, 0.875637458, 0.639141079, 0.696479632,
0.954031849, 0.50925641, -0.50925641, -0.954031849, -0.696479632, -0.639141079,
-0.875637458, -0.814329015, -0.632264626, -0.802820512, -0.968738879, -0.765676034,
-0.664562475, -0.897723205, -0.928419527, -0.676188057, -0.695656841, -0.896260999,
-0.762429734, -0.603896038, -0.857877516, -0.853079823, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
और तरंग:
मैंने एक रेडिक्स 2 एल्गोरिथ्म पर आधारित इन नमूनों का डीएफटी लिया और इन मूल्यों को प्राप्त किया:
0, 20.0329458083285-9.47487772467906i, -10.5723252177717-8.67648307596821i,
-8.88751906208901E-002+0.354809649783859i, 3.59322342970171-0.714736578926027i,
-3.28379151210465-4.42768029850565i, -0.232297876050463+0.434598758428557i,
1.68672762980862+8.28636148716246E-002i, -1.54927040705738-3.7402696285012i,
-0.551413356435698+0.608390885175318i, 0.616809338622588+0.187107067289195i,
-0.458965526924983-3.09409425549091i, -0.966784216252588+0.645984560777537i,
7.03082277241579E-003+4.21411299459407E-003i, 0.196179960454289-1.99184856512683i,
-0.919089774378072+0.328855579674163i, 0.222736292145887+0.222736292145884i,
1.23799833509466-3.45997355924453i, -3.29198268057418+0.324231994037239i,
-0.495840326552116-0.827259606915814i, -0.434268223171498+0.649928325340974i,
-1.13740282784196-0.168717771696843i, -8.50255402020411E-002-0.280291642522456i,
-0.495871287837938+0.449431537929797i, -0.705190861543966-0.292099618913078i,
-1.8498657760867E-003-3.76548829156425E-002i, -0.56327531746565+0.301076929791613i,
-0.445444858519027-0.330364422654705i, -2.53084763487132E-002+0.12723430263342i,
-0.608135034699087+0.152329896227613i, -0.254967975468-0.31067937701979i,
-0.114451748984804+0.241987891739128i, -0.623647028694518, -0.114451748984793-
0.241987891739111i, -0.254967975467992+0.310679377019776i, -0.608135034699088-
0.152329896227612i, -2.53084763487126E-002-0.127234302633416i,
-0.445444858519022+0.330364422654704i, -0.563275317465649-0.301076929791616i,
-1.84986577609081E-003+3.76548829156447E-002i, -0.705190861543962+0.292099618913075i,
-0.495871287837939-0.449431537929793i, -8.50255402020378E-002+0.280291642522452i,
-1.13740282784196+0.168717771696845i, -0.434268223171501-0.649928325340972i,
-0.495840326552115+0.827259606915815i, -3.29198268057417-0.324231994037237i,
1.23799833509466+3.45997355924453i, 0.222736292145887-0.222736292145884i,
-0.919089774378077-0.328855579674149i, 0.1961799604543+1.99184856512683i,
7.03082277241257E-003-4.21411299459534E-003i, -0.966784216252593-0.645984560777534i,
-0.458965526924974+3.09409425549092i, 0.616809338622592-0.187107067289204i,
-0.551413356435713-0.608390885175314i, -1.54927040705737+3.74026962850121i,
1.68672762980861-8.28636148716247E-002i, -0.232297876050455-0.434598758428559i,
-3.28379151210465+4.42768029850566i, 3.59322342970171+0.714736578926018i,
-8.88751906209093E-002-0.354809649783852i, -10.5723252177717+8.67648307596825i,
20.0329458083285+9.47487772467899i
फ़्रिक्वेंसी डोमेन प्रतिनिधित्व
फिर से, ऊपर दी गई जटिल संख्याओं के परिमाण से कुछ भी प्रकट नहीं होता है जिसे मैं समय डोमेन में अंतःस्थापित मानों में वापस कर सकता हूं।
ईटीए चूंकि यहां जवाब मुझे खिड़की से देखने के लिए कहते हैं, मैंने एक और प्रयोग किया और बहुत सी झूठी शुरुआत के बाद निम्नलिखित परिणाम प्राप्त किए।
प्रयोग ४
समय डोमेन प्रतिनिधित्व
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.853079823, 0.857877516, 0.603896038,
0.762429734, 0.896260999, 0.695656841, 0.676188057, 0.928419527, 0.897723205,
0.664562475, 0.765676034, 0.968738879, 0.802820512, 0.632264626, 0.814329015,
0.875637458, 0.639141079, 0.696479632, 0.954031849, 0.50925641, -0.50925641,
-0.954031849, -0.696479632, -0.639141079, -0.875637458, -0.814329015, -0.632264626,
-0.802820512, -0.968738879, -0.765676034, -0.664562475, -0.897723205, -0.928419527,
-0.676188057, -0.695656841, -0.896260999, -0.762429734, -0.603896038, -0.857877516,
-0.853079823, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
जैसा दिखता है:
हैमिंग विंडो गुणांक
0.08, 0.082285843, 0.089120656, 0.100436509, 0.116120943, 0.136018076, 0.159930164,
0.187619556, 0.218811064, 0.253194691, 0.290428719, 0.330143098, 0.371943129,
0.415413385, 0.460121838, 0.505624157, 0.551468118, 0.597198104, 0.64235963,
0.686503859, 0.729192067, 0.77, 0.808522089, 0.844375485, 0.877203861, 0.906680953,
0.932513806, 0.954445679, 0.972258606, 0.985775552, 0.99486218, 0.999428184,
0.999428184, 0.99486218, 0.985775552, 0.972258606, 0.954445679, 0.932513806,
0.906680953, 0.877203861, 0.844375485, 0.808522089, 0.77, 0.729192067, 0.686503859,
0.64235963, 0.597198104, 0.551468118, 0.505624157, 0.460121838, 0.415413385,
0.371943129, 0.330143098, 0.290428719, 0.253194691, 0.218811064, 0.187619556,
0.159930164, 0.136018076, 0.116120943, 0.100436509, 0.089120656, 0.082285843, 0.080.08,
0.082285843, 0.089120656, 0.100436509, 0.116120943, 0.136018076, 0.159930164,
0.187619556, 0.218811064, 0.253194691, 0.290428719, 0.330143098, 0.371943129,
0.415413385, 0.460121838, 0.505624157, 0.551468118, 0.597198104, 0.64235963,
0.686503859, 0.729192067, 0.77, 0.808522089, 0.844375485, 0.877203861, 0.906680953,
0.932513806, 0.954445679, 0.972258606, 0.985775552, 0.99486218, 0.999428184,
0.999428184, 0.99486218, 0.985775552, 0.972258606, 0.954445679, 0.932513806,
0.906680953, 0.877203861, 0.844375485, 0.808522089, 0.77, 0.729192067, 0.686503859,
0.64235963, 0.597198104, 0.551468118, 0.505624157, 0.460121838, 0.415413385,
0.371943129, 0.330143098, 0.290428719, 0.253194691, 0.218811064, 0.187619556,
0.159930164, 0.136018076, 0.116120943, 0.100436509, 0.089120656, 0.082285843, 0.08
ऐसे दिखते हैं
उनके उत्पाद (क्या यह केवल एक साधारण उत्पाद होगा?)
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.354380777, 0.394728179, 0.305344425,
0.420455691, 0.53524537, 0.446861871, 0.464205711, 0.676996154, 0.691246868,
0.537313441, 0.646518073, 0.849781485, 0.727902068, 0.589595493, 0.77723281,
0.851346054, 0.63004965, 0.692901245, 0.953486318, 0.508965209, -0.506639943,
-0.940461272, -0.677158316, -0.610025441, -0.816544018, -0.738336608, -0.554624971,
-0.67788196, -0.783246782, -0.589570546, -0.484593685, -0.616290445, -0.596379223,
-0.403818226, -0.383632569, -0.453171212, -0.350810571, -0.250866497, -0.319081647,
-0.281638415, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
हमशक्ल:
फ़्रिक्वेंसी डोमेन प्रतिनिधित्व
1.01978454171002, -1.04956742046721-14.885596686908i,
0.729587297164687+12.4883097743251i, -0.393281811348907-4.24261013057826i,
0.761581725234628+3.2398820477072i, -0.876737136684714-3.79393194973719i,
0.480276094694696+1.88418789653125i, -0.735142602781246-1.8175563772351i,
1.02811278581892+2.5331069394699i, -0.584707361656586-1.41705783059227i,
0.642189640425863+1.09157435002371i, -1.08027274688044-1.77950446999262i,
0.690373934734768+1.16057125940753i, -0.45786262480057-0.586349217392973i,
0.837117486838485+0.985681387258948i, -0.684335876271999-0.810862267851556i,
0.930190039748881+0.842491953501215i, -2.11497450796919-1.82531206712061i,
1.77660184883125+1.59539043421572i, -8.20687157856373E-003-0.123202767234891i,
-0.280149317662962-0.244195928734504i, -0.313777442633104-0.174757927010731i,
-5.83069102281942E-002+1.54514819958589E-002i, 0.211135948552966+0.12606544182717i,
0.227409826380236+7.86489707052085E-002i, 2.49029866186928E-003-3.26908578232317E-002i,
-0.204885728671642-7.60371335974082E-002i, -0.174609549526536-2.58285031988847E-002i,
4.55943100777029E-002+3.62216126377679E-002i, 0.205437067084294+3.66474457853982E-002i,
0.130866115437055-7.39089659931302E-003i, -8.90307098969982E-002-2.75195665163235E-
002i, -0.206016142964952, -8.90307098969848E-002+2.75195665163199E-002i,
0.130866115437044+7.39089659931835E-003i, 0.205437067084297-3.66474457854036E-002i,
4.55943100777004E-002-3.62216126377661E-002i, -0.174609549526531+2.58285031988801E-
002i, -0.204885728671643+7.60371335974132E-002i, 2.49029866187001E-
003+3.26908578232264E-002i, 0.227409826380234-7.86489707052067E-002i, 0.21113594855297-
0.126065441827174i, -5.83069102281978E-002-1.54514819958551E-002i,
-0.313777442633101+0.174757927010727i, -0.280149317662962+0.244195928734507i,
-8.20687157856043E-003+0.123202767234886i, 1.77660184883125-1.59539043421572i,
-2.11497450796919+1.82531206712061i, 0.930190039748879-0.842491953501215i,
-0.684335876271989+0.810862267851559i, 0.837117486838478-0.985681387258952i,
-0.457862624800567+0.586349217392971i, 0.690373934734765-1.16057125940753i,
-1.08027274688043+1.77950446999263i, 0.642189640425861-1.09157435002371i,
-0.584707361656583+1.41705783059227i, 1.02811278581891-2.5331069394699i,
-0.735142602781236+1.81755637723511i, 0.480276094694689-1.88418789653125i,
-0.876737136684699+3.79393194973719i, 0.76158172523462-3.2398820477072i,
-0.393281811348889+4.24261013057827i, 0.729587297164646-12.4883097743252i,
-1.04956742046715+14.885596686908i
ऐसे दिखते हैं:
क्या ये वैध परिणाम हैं?क्योंकि मैं अभी भी कहीं भी नहीं लग रहा है!
मैंने दो और प्रयोग किए और प्रतीत होता है कि वह तात्कालिक रूप से इच्छित परिणामों के करीब है, लेकिन इसका समाधान मेरे लिए एक हैक की अनुभूति है।
प्रयोग ५
0, 0.853079823, 0.857877516, 0.603896038, 0.762429734, 0.896260999, 0.695656841,
0.676188057, 0.928419527, 0.897723205, 0.664562475, 0.765676034, 0.968738879,
0.802820512, 0.632264626, 0.814329015, 0.875637458, 0.639141079, 0.696479632,
0.954031849, 0.50925641, -0.50925641, -0.954031849, -0.696479632, -0.639141079,
-0.875637458, -0.814329015, -0.632264626, -0.802820512, -0.968738879, -0.765676034,
-0.664562475, -0.897723205, -0.928419527, -0.676188057, -0.695656841, -0.896260999,
-0.762429734, -0.603896038, -0.857877516, -0.853079823.
मैंने एक रैखिक प्रक्षेप किया और उसी से 64 नमूने निकाले। वे निम्नलिखित की तरह लग रहे थे:
वांछित आदर्श आउटपुट (प्रथम प्रयोग) की तुलना में आवृत्ति डोमेन प्रतिनिधित्व निम्नानुसार है:
मैं नमूने अंतरिक्ष की दूसरी छमाही के छीन लिया है क्योंकि Nyquist सीमा के बाद घटक गुना। ब्याज की आवृत्तियों पर थोड़ा क्षीणन है, लेकिन स्पेक्ट्रम के पार एक शोर तल जोड़ा जाता है। स्पष्टीकरण?
प्रयोग ६
प्रयोग 5 के समान , लेकिन 32 प्रक्षेपित नमूने।
फ़्रिक्वेंसी डोमेन तुलना:
अनुपात सही हैं, लेकिन परिमाण आधा है! क्यों?
इसलिए मैं अनुमान लगा सकता हूं, और मैं गलत हो सकता हूं (मुझे आशा है कि मैं हूं), कि यदि पूर्ण तरंग अवधि में नमूनों की संख्या 2 की शक्ति नहीं है, तो उसी का एफएफटी किसी तरह के ऑपरेशन के बिना कुछ भी प्रकट नहीं करता है , कि मुझे इस समय बाहर निकालता है।
चूँकि सैंपलिंग फ़्रीक्वेंसी पर मेरा बहुत कम नियंत्रण है, इसलिए मेरे पास कौन से विकल्प खुले हैं ताकि मैं उन मूल्यों को वापस पा सकूँ जिन्हें मैंने टाइम डोमेन में इंजेक्ट किया था?