Poincaré ऊपरी आधे अंतरिक्ष मॉडल में हाइपरबोलिक स्पेस साधारण जैसा दिखता है लेकिन अपेक्षाकृत सरल तरीके से कोण और दूरी की धारणा के साथ। इयूक्लिडियन स्थान में मैं कई तरीके पैदा करने से जैसे में एक गेंद में समान रूप से एक यादृच्छिक बिंदु का स्वाद ले सकते स्वतंत्र गाऊसी नमूने एक दिशा प्राप्त करने के लिए, और अलग से नमूना एक रेडियल समन्वय समान रूप से नमूने के द्वारा से , जहांत्रिज्या है, और सेटिंग । हाइपरबोलिक ऊपरी आधे विमान में एक गोला होता है जो अभी भी एक गोला है, केवल इसका केंद्र यूक्लिडियन मीट्रिक में केंद्र नहीं होगा, इसलिए हम ऐसा ही कर सकते थे।
यदि हम एक गैर-समान वितरण के अनुसार नमूना लेना चाहते हैं, लेकिन अभी भी एक आइसोट्रोपिक तरीके से, उदाहरण के लिए एक गाऊसी वितरण, यह इतना आसान नहीं लगता है। यूक्लिडियन स्पेस में हम बस प्रत्येक समन्वय के लिए एक गाऊसी नमूना उत्पन्न कर सकते हैं (यह केवल गाऊसी वितरण के लिए काम करता है), या समकक्ष रूप से एक बहुआयामी गाऊसी नमूना उत्पन्न कर सकता है। क्या हाइपरबोलिक स्पेस में इस सैंपल को सैंपल में बदलने का कोई सीधा तरीका है?
एक वैकल्पिक दृष्टिकोण पहले (से जैसे एक दिशा समान रूप से वितरित दिशा उत्पन्न करने के लिए हो सकता है रेडियल घटक के लिए एक गाऊसी नमूना तो गाऊसी नमूने), और अंत में छवि उत्पन्न घातीय नक्शा निर्दिष्ट लंबाई के लिए निर्दिष्ट दिशा में। एक भिन्नता सिर्फ यूक्लिडियन गाऊसी के नमूने को लेना होगा और इसे घातीय मानचित्र के तहत मैप करना होगा।
मेरे सवाल:
- हाइपरबोलिक स्पेस में दिए गए माध्य और मानक विचलन के साथ गाऊसी नमूना प्राप्त करने का एक अच्छा और कुशल तरीका क्या होगा?
- क्या मैं ऊपर वर्णित तरीके वांछित नमूना प्रदान करते हैं?
- किसी ने पहले से ही सूत्र बाहर काम किया?
- यह अन्य मैट्रिक्स और अन्य प्रायिकता वितरण के लिए कैसे सामान्य है?
अग्रिम में धन्यवाद।
संपादित करें
मुझे बस एहसास हुआ कि वर्दी के नमूने के मामले में भी ये सवाल बने हुए हैं; हालांकि एक गोला एक गोला है, एक समान वितरण एक गेंद पर एक निरंतर कार्य द्वारा वर्णित नहीं किया जाएगा।