एक विमान पर कई बिंदुओं के निर्देशांक को देखते हुए, और प्रत्येक बिंदु के चारों ओर एक सर्कल के त्रिज्या को हलकों और किनारों को दर्शाते हुए बहुभुज बनाएं जहां सर्कल मिलते हैं। सीधे किनारे हमेशा सर्कल-सर्कल चौराहे लाइनों के साथ गिरेंगे , लेकिन इन लाइनों की पूरी लंबाई का पालन नहीं कर सकते हैं।
प्रति mbomb007 सुझाव, 2 डी साबुन के बुलबुले के व्यवहार की कल्पना करें। यह तकनीकी रूप से गलत है, क्योंकि ऊर्जा को कम करने के लिए साबुन के बुलबुले हमेशा 120 ° कोण पर मिलेंगे , जबकि ये वृत्त किसी भी कोण पर मिल सकते हैं।
यह एक वोरोनोई आरेख है, जो एक परिभाषित क्षेत्र विमान है। धन्यवाद एंड्रियास । यह वास्तव में वोरोनोई आरेख का एक सामान्यीकरण है जिसे पावर आरेख कहा जाता है।
उदाहरण
उदाहरण के लिए, दो अंक और दो रेडीआई दिए गए, आउटपुट इस तरह दिख सकता है:
एक और बिंदु और त्रिज्या जोड़ें और आउटपुट इस तरह दिख सकता है:
इनपुट
आप चाहें तो इनपुट को स्ट्रक्चर कर सकते हैं। कृपया निम्न इनपुट के साथ परिणाम पोस्ट करें।
परीक्षण 1
- x: 10, y: 10, r: 10
- x: 25, y: 12, r: 8
परीक्षण २
- x: 8, y: 10, r: 6
- x: 20, y: 8, r: 4
- x: 18, y: 20, r: 12
उत्पादन
आउटपुट चित्रमय होना चाहिए और इसमें बहुभुज सीमाएं शामिल होनी चाहिए, लेकिन कुछ और की आवश्यकता नहीं है। अंक और चौराहों का प्रतिनिधित्व करने की आवश्यकता नहीं है जैसे वे उदाहरणों में हैं।
प्रतिबन्ध
- कोई बिंदु दूसरे सर्कल के दायरे में मौजूद नहीं होगा।
- मानक कोडगुल्फ नियम।
- खामियों के साथ कोई जवाब स्वीकार नहीं किया जाएगा, लेकिन इसके साथ मज़े करने के लिए स्वतंत्र महसूस करें।