QPSK और 4 -QAM तारामंडल दोनों में 45,135,225 और 315 डिग्री (आपके प्रश्न में नोट टाइपो) पर संकेत बिंदु हैं । वे दो वाहक संकेतों (जिसे inphase और quadrature वाहक कहा जाता है) के आयाम मॉड्यूलेशन (या, यदि आप चाहें, तो चरण मॉड्यूलेशन ) से उत्पन्न होते हैं, जो कि ऑर्थोगोनल हैं (जिसका अर्थ है कि वे चरण में 90 डिग्री से भिन्न हैं। QPSK या 4 - का कैनन प्रतिनिधित्व) एक प्रतीक अंतराल के दौरान QAM संकेत है
s(t)=(−1)bIcos(2πfct)−(−1)bQsin(2πfct)
जहांcos(2πfct) और
−sin(2πfct) कर रहे हैंइंफेजऔरक्षेत्रकलनआवृत्ति पर वाहक के सिग्नलfc हर्ट्ज औरbI,bQ∈{0,1} दो डेटा बिट्स हैं (स्वाभाविक रूप से, इनपेज़ और क्वाडरेचर कैरियर्स पर प्रेषित होने के बाद, इनपेज़ और क्वाडरेचर डेटा बिट्स कहलाते हैं)। सूचना इंफेज वाहक है किcos(2πfct) हैआयाम +1 या
−1 के रूप में इंफेज डेटा बिट है मूल्य के अनुसार0 या1 , और इसी क्षेत्रकलन वाहक−sin(2πfct) हैआयाम +1 या
−1क्वाडचर डेटा बिट के अनुसार मान 0 या 1 । कुछ लोग इसे चीजों की सामान्य योजना के व्युत्क्रम के रूप में मानते हैं, विशेष रूप से यह कहते हुए कि सकारात्मक आयाम 1 डेटा बिट्स और 0 बिट्स के साथ नकारात्मक एम्पलीट्यूड के साथ जुड़ा होना चाहिए । लेकिन अगर हम से इस पर गौर
चरण मॉडुलन परिप्रेक्ष्य, एक 0 बिट साधन वाहक है कि ( cos(2πfct) या −sin(2πfct) जैसा भी मामला हो) के साथ फैलता है में कोई बदलाव नहीं चरणजबकि 1 डेटा बिट चरण में परिवर्तन करता है (हम इसे चरण विलंब के रूप में सोचेंगे ) 180 डिग्री या π रेडियन। दरअसल, QPSK को व्यक्त करने का एक और तरीका है / 4 -QAM संकेत के रूप में है
s(t)=cos(2πfct−bIπ)−sin(2πfct−bQπ)
which makes the phase modulation viewpoint very clear. But,
regardless of which viewpoint we use, during a symbol interval,
the QPSK/4-QAM signal is one of the following four signals:
2–√cos(2πfct+π4),2–√cos(2πfct+3π4),2–√cos(2πfct+5π4),2–√cos(2πfct+7π4)
corresponding to (bI,bQ)=(0,0),(1,0),(1,1),(0,1) respectively.
Note that the viewpoint taken here is of QPSK as consisting of
two BPSK signals on phase-orthogonal carriers. The demodulator
thus consists of two BPSK receivers (called the inphase branch
and quadrature branch, what else?).
An alternative view of QPSK as changing the phase
of a single carrier depending on a 4-valued symbol is developed a little later.
The QPSK/4-QAM signal can also be expressed as
s(t)=Re{Bexp(j2πfct)}=Re{[(−1)bI+j(−1)bQ]exp(j2πfct)}
where B is the complex-valued baseband symbol taking on values
in {±1±j} and which, when plotted on the complex plane,
gives constellation points distant 2–√ from the
origin and at 45,135,225, and 315 degrees
corresponding to data bits (bI,bQ)=(0,0),(1,0),(1,1),(0,1)
respectively. Note that complementary bit pairs lie diagonally across the circle from each other so that double bit errors are less likely than single bit errors. Note also that the bits naturally
occur around the circle in Gray code order; there is no need to massage a given data bit pair (dI,dQ) (say (0,1)) from "natural representation" (where it means the integer 2=dI+2dQ: dI is the LSB and dQ the MSB here) to "Gray code representation" (bI,bQ)=(1,1) of the integer 2 as some implementations seem to insist
on doing. Indeed, such massaging leads to poorer BER performance since the decoded (b^I,b^Q) must be ummassaged at the receiver into the decoded data bits (d^I,d^Q) making the single channel bit error (bI,bQ)=(1,1)→(b^I,b^Q)=(1,0)
into the double data bit error
(dI,dQ)=(0,1)→(bI,bQ)=(1,1)→(b^I,b^Q)=(1,0)→(d^I,d^Q)=(1,0).
If we delay the four possible signals exhibited above by 45 degrees or
π/4 radians (subtract π/4 radians from the argument of the cosinusoid), we get
2–√cos(2πfct+π4)⇒2–√cos(2πfct+0π2)=2–√cos(2πfct),2–√cos(2πfct+3π4)⇒2–√cos(2πfct+1π2)=−2–√sin(2πfct),2–√cos(2πfct+5π4)⇒2–√cos(2πfct+2π2)=−2–√cos(2πfct)2–√cos(2πfct+7π4)⇒2–√cos(2πfct+3π2)=2–√sin(2πfct),
which give the four constellation points at 0,90,180,270 degrees referred
to by the OP. This form gives us another way of viewing QPSK signaling:
a single carrier signal whose phase takes on four values depending on
the input symbol which takes on values {0,1,2,3}. We express this in tabular form.
(bI,bQ)(0,0)(0,1)(1,1)(1,0)normal value k0132Gray code value ℓ0123signal as above2–√cos(2πfct)2–√sin(2πfct)−2–√cos(2πfct)−2–√sin(2πfct)phase-modulated signal2–√cos(2πfct−0π2)2–√cos(2πfct−1π2)2–√cos(2πfct−2π2)2–√cos(2πfct−3π2)
That is, we can regard the QPSK modulator as having input
(bI,bQ) that it regards as the Gray code representation
of the integer ℓ∈{0,1,2,3} and produces the
output
2–√cos(2πfct−ℓπ2).
In other words, the phase of carrier 2–√cos(2πfct) is
modulated (changed from 0 to ℓπ2) in
response to the input ℓ.
So how does this work in real life or MATLAB, whichever comes first?
If we define a QPSK signal as having value 2–√cos(2πfct−ℓπ2) where the value of ℓ is typed in as 0
or 1
or 2
or 3
, we will get the QPSK signal described above, but the
demodulator will produce the bit pair (bI,bQ) and we must
remember that the output is ℓ in Gray code interpretation,
that is, the demodulator output will be (1,1) if ℓ happened
to have value 2, and interpreting output (1,1) as 3 is a decoding
error that is not generally discussed in textbooks!