चर लंबाई के तार के लिए एक बेहतर समानता रैंकिंग एल्गोरिथ्म


152

मैं एक स्ट्रिंग समानता एल्गोरिथ्म की तलाश कर रहा हूं जो आम तौर पर सुझाए गए (लेवेन्शेटिन दूरी, ध्वनि, आदि) की तुलना में चर लंबाई के तार पर बेहतर परिणाम देता है।

उदाहरण के लिए,

दिया गया स्ट्रिंग A: "रॉबर्ट",

फिर स्ट्रिंग बी: "एमी रॉबर्टसन"

से बेहतर मैच होगा

स्ट्रिंग सी: "रिचर्ड"

इसके अलावा, अधिमानतः, यह एल्गोरिथ्म भाषा अज्ञेय होना चाहिए (अंग्रेजी के अलावा अन्य भाषाओं में भी काम करता है)।



यह भी देखें: पासा के गुणांक
avid_useR 13

जवाबों:


155

कैटालिसॉफ्ट के साइमन व्हाइट ने एक बहुत ही चतुर एल्गोरिदम के बारे में एक लेख लिखा था, जो आसन्न चरित्र जोड़े की तुलना करता है जो मेरे उद्देश्यों के लिए वास्तव में अच्छी तरह से काम करता है:

http://www.catalysoft.com/articles/StrikeAMatch.html

साइमन का एल्गोरिथ्म का जावा संस्करण है और नीचे मैंने इसका पीएल / रूबी संस्करण लिखा है (मार्क वोंग-वानरेन द्वारा संबंधित मंच प्रविष्टि टिप्पणी में किए गए सादे रूबी संस्करण से लिया गया है) ताकि मैं इसे अपने पोस्टग्रॉफिक प्रश्नों में उपयोग कर सकूं:

CREATE FUNCTION string_similarity(str1 varchar, str2 varchar)
RETURNS float8 AS '

str1.downcase! 
pairs1 = (0..str1.length-2).collect {|i| str1[i,2]}.reject {
  |pair| pair.include? " "}
str2.downcase! 
pairs2 = (0..str2.length-2).collect {|i| str2[i,2]}.reject {
  |pair| pair.include? " "}
union = pairs1.size + pairs2.size 
intersection = 0 
pairs1.each do |p1| 
  0.upto(pairs2.size-1) do |i| 
    if p1 == pairs2[i] 
      intersection += 1 
      pairs2.slice!(i) 
      break 
    end 
  end 
end 
(2.0 * intersection) / union

' LANGUAGE 'plruby';

एक जादू की तरह काम करता है!


32
आपको जवाब मिल गया और 4 मिनट में सब लिख दिया? प्रभावशाली!
मैट जे

28
मैंने कुछ शोध और कार्यान्वयन के बाद अपना जवाब तैयार किया। मैंने इसे यहां किसी अन्य व्यक्ति के लाभ के लिए रखा, जो कि वैकल्पिक एल्गोरिथम का उपयोग करके एसओ में व्यावहारिक उत्तर की तलाश में है क्योंकि संबंधित प्रश्नों के अधिकांश उत्तर लेवेंशेटिन या साउंडेक्स के चारों ओर घूमते हुए प्रतीत होते हैं।
मारजागो

18
बस मैं जो ढूंढ रहा था। क्या आप करेंगे मुझसे शादी।
ब्लैकटीया

6
@JasonSundram सही है - वास्तव में, यह है चरित्र स्तरीय Bigrams पर अच्छी तरह से ज्ञात पासा गुणांक, लेखक के रूप में "परिशिष्ट" में लिखते हैं (पृष्ठ के नीचे)।
फ्रेड फू

4
यह 1 (100% मैच) का "स्कोर" लौटाता है जब एक एकल पृथक अक्षर वाले तार की तुलना इस अंतर की तरह होती है: string_similarity("vitamin B", "vitamin C") #=> 1क्या इस तरह के व्यवहार को रोकने का एक आसान तरीका है?
मृत्युंजय

77

मारजगाओ का जवाब बहुत अच्छा है। मैंने इसे C # में बदल दिया इसलिए मुझे लगा कि मैं इसे यहाँ पोस्ट करूँगा:

पास्टबिन लिंक

/// <summary>
/// This class implements string comparison algorithm
/// based on character pair similarity
/// Source: http://www.catalysoft.com/articles/StrikeAMatch.html
/// </summary>
public class SimilarityTool
{
    /// <summary>
    /// Compares the two strings based on letter pair matches
    /// </summary>
    /// <param name="str1"></param>
    /// <param name="str2"></param>
    /// <returns>The percentage match from 0.0 to 1.0 where 1.0 is 100%</returns>
    public double CompareStrings(string str1, string str2)
    {
        List<string> pairs1 = WordLetterPairs(str1.ToUpper());
        List<string> pairs2 = WordLetterPairs(str2.ToUpper());

        int intersection = 0;
        int union = pairs1.Count + pairs2.Count;

        for (int i = 0; i < pairs1.Count; i++)
        {
            for (int j = 0; j < pairs2.Count; j++)
            {
                if (pairs1[i] == pairs2[j])
                {
                    intersection++;
                    pairs2.RemoveAt(j);//Must remove the match to prevent "GGGG" from appearing to match "GG" with 100% success

                    break;
                }
            }
        }

        return (2.0 * intersection) / union;
    }

    /// <summary>
    /// Gets all letter pairs for each
    /// individual word in the string
    /// </summary>
    /// <param name="str"></param>
    /// <returns></returns>
    private List<string> WordLetterPairs(string str)
    {
        List<string> AllPairs = new List<string>();

        // Tokenize the string and put the tokens/words into an array
        string[] Words = Regex.Split(str, @"\s");

        // For each word
        for (int w = 0; w < Words.Length; w++)
        {
            if (!string.IsNullOrEmpty(Words[w]))
            {
                // Find the pairs of characters
                String[] PairsInWord = LetterPairs(Words[w]);

                for (int p = 0; p < PairsInWord.Length; p++)
                {
                    AllPairs.Add(PairsInWord[p]);
                }
            }
        }

        return AllPairs;
    }

    /// <summary>
    /// Generates an array containing every 
    /// two consecutive letters in the input string
    /// </summary>
    /// <param name="str"></param>
    /// <returns></returns>
    private string[] LetterPairs(string str)
    {
        int numPairs = str.Length - 1;

        string[] pairs = new string[numPairs];

        for (int i = 0; i < numPairs; i++)
        {
            pairs[i] = str.Substring(i, 2);
        }

        return pairs;
    }
}

2
+100 अगर मैं कर सकता था, तो आपने मुझे एक कठिन दिनों के काम साथी के रूप में बचा लिया! चीयर्स।
vvohra87

1
बहुत अच्छा! मेरे पास एकमात्र सुझाव है, इसे विस्तार में बनाना होगा।
लेविटिकन

+1! बढ़िया है कि यह जावा के लिए मामूली संशोधनों के साथ भी काम करता है। और यह लेवेंसहाइट की तुलना में बेहतर प्रतिक्रियाएं देता है।
Xyene

1
मैंने एक संस्करण को नीचे विस्तार विधि में परिवर्तित किया। मूल संस्करण और भयानक अनुवाद के लिए धन्यवाद।
फ्रैंक रंडजेट

@ मिचेल ला वोई धन्यवाद, यह बहुत अच्छा है! हालांकि थोड़ी समस्या है (2.0 * intersection) / union- मुझे दो खाली तारों की तुलना करने पर डबल.एनएएन मिलता है।
वोजत दोहल

41

यहाँ marzagao के उत्तर का एक और संस्करण है , यह पायथन में लिखा गया है:

def get_bigrams(string):
    """
    Take a string and return a list of bigrams.
    """
    s = string.lower()
    return [s[i:i+2] for i in list(range(len(s) - 1))]

def string_similarity(str1, str2):
    """
    Perform bigram comparison between two strings
    and return a percentage match in decimal form.
    """
    pairs1 = get_bigrams(str1)
    pairs2 = get_bigrams(str2)
    union  = len(pairs1) + len(pairs2)
    hit_count = 0
    for x in pairs1:
        for y in pairs2:
            if x == y:
                hit_count += 1
                break
    return (2.0 * hit_count) / union

if __name__ == "__main__":
    """
    Run a test using the example taken from:
    http://www.catalysoft.com/articles/StrikeAMatch.html
    """
    w1 = 'Healed'
    words = ['Heard', 'Healthy', 'Help', 'Herded', 'Sealed', 'Sold']

    for w2 in words:
        print('Healed --- ' + w2)
        print(string_similarity(w1, w2))
        print()

2
String_similarity में एक छोटा सा बग होता है जब एक शब्द में डुप्लिकेट ngram होते हैं, जिसके परिणामस्वरूप समान स्ट्रिंग्स के लिए स्कोर 1 होता है। "Hit_count + = 1" के बाद 'ब्रेक' जोड़ने से यह ठीक हो जाता है।
जयंती

1
@jbaiter: अच्छी पकड़। मैंने आपके परिवर्तनों को प्रतिबिंबित करने के लिए इसे बदल दिया।
जॉन रटलेज

3
साइमन व्हाइट के लेख में, उन्होंने कहा कि "ध्यान दें कि जब भी कोई मैच मिलता है, तो उस चरित्र जोड़ी को दूसरी सरणी सूची से हटा दिया जाता है ताकि हमें एक ही चरित्र जोड़ी के खिलाफ कई बार मेल खाने से रोका जा सके। (अन्यथा, 'GGGGG' एक सही मैच स्कोर करेगा 'जीजी' के खिलाफ।) "मैं इस कथन को यह कहने के लिए बदल दूंगा कि यह परिपूर्ण मैच की तुलना में अधिक होगा। इसे ध्यान में रखे बिना, यह भी लगता है कि एल्गोरिथ्म सकर्मक नहीं है (समानता (x, y) = / = समानता (y, x))। जोड़े को जोड़ने के बाद लाइन हिट_काउंट (y) हिट_काउंट + = 1 समस्या को ठीक करता है।
निंजामेइम्बर्स 21

17

यहां साइमन व्हाइट द्वारा सुझाए गए स्ट्राइकमैच एल्गोरिथ्म का मेरा PHP कार्यान्वयन है। फायदे (जैसे यह लिंक में कहते हैं) हैं:

  • शाब्दिक समानता के एक सच्चे प्रतिबिंब - छोटे अंतर के साथ तार को समान होने के रूप में पहचाना जाना चाहिए। विशेष रूप से, एक महत्वपूर्ण स्थानापन्न ओवरलैप को तार के बीच उच्च स्तर की समानता की ओर इशारा करना चाहिए।

  • शब्द क्रम के बदलाव की एक मजबूती - दो तार जिसमें एक ही शब्द होते हैं, लेकिन एक अलग क्रम में, समान होने के रूप में पहचाना जाना चाहिए। दूसरी ओर, यदि एक तार दूसरे में समाहित वर्णों का मात्र एक यादृच्छिक विपर्यय है, तो इसे (आमतौर पर) डिस्मिलर के रूप में पहचाना जाना चाहिए।

  • भाषा की स्वतंत्रता - एल्गोरिथ्म न केवल अंग्रेजी में, बल्कि कई अलग-अलग भाषाओं में काम करना चाहिए।

<?php
/**
 * LetterPairSimilarity algorithm implementation in PHP
 * @author Igal Alkon
 * @link http://www.catalysoft.com/articles/StrikeAMatch.html
 */
class LetterPairSimilarity
{
    /**
     * @param $str
     * @return mixed
     */
    private function wordLetterPairs($str)
    {
        $allPairs = array();

        // Tokenize the string and put the tokens/words into an array

        $words = explode(' ', $str);

        // For each word
        for ($w = 0; $w < count($words); $w++)
        {
            // Find the pairs of characters
            $pairsInWord = $this->letterPairs($words[$w]);

            for ($p = 0; $p < count($pairsInWord); $p++)
            {
                $allPairs[] = $pairsInWord[$p];
            }
        }

        return $allPairs;
    }

    /**
     * @param $str
     * @return array
     */
    private function letterPairs($str)
    {
        $numPairs = mb_strlen($str)-1;
        $pairs = array();

        for ($i = 0; $i < $numPairs; $i++)
        {
            $pairs[$i] = mb_substr($str,$i,2);
        }

        return $pairs;
    }

    /**
     * @param $str1
     * @param $str2
     * @return float
     */
    public function compareStrings($str1, $str2)
    {
        $pairs1 = $this->wordLetterPairs(strtoupper($str1));
        $pairs2 = $this->wordLetterPairs(strtoupper($str2));

        $intersection = 0;

        $union = count($pairs1) + count($pairs2);

        for ($i=0; $i < count($pairs1); $i++)
        {
            $pair1 = $pairs1[$i];

            $pairs2 = array_values($pairs2);
            for($j = 0; $j < count($pairs2); $j++)
            {
                $pair2 = $pairs2[$j];
                if ($pair1 === $pair2)
                {
                    $intersection++;
                    unset($pairs2[$j]);
                    break;
                }
            }
        }

        return (2.0*$intersection)/$union;
    }
}

17

जॉन रुतलेज के उत्तर का एक छोटा संस्करण :

def get_bigrams(string):
    '''
    Takes a string and returns a list of bigrams
    '''
    s = string.lower()
    return {s[i:i+2] for i in xrange(len(s) - 1)}

def string_similarity(str1, str2):
    '''
    Perform bigram comparison between two strings
    and return a percentage match in decimal form
    '''
    pairs1 = get_bigrams(str1)
    pairs2 = get_bigrams(str2)
    return (2.0 * len(pairs1 & pairs2)) / (len(pairs1) + len(pairs2))

यहां तक ​​कि intersectionचर भी एक लाइन बेकार है।
चिब्यूज ओपाटा

14

यह चर्चा वास्तव में मददगार रही है, धन्यवाद। मैंने एक्सेल के साथ उपयोग के लिए एल्गोरिथ्म को VBA में बदल दिया और वर्कशीट फ़ंक्शन के कुछ संस्करणों को लिखा, एक तार की एक जोड़ी की सरल तुलना के लिए, दूसरा एक स्ट्रिंग की श्रेणी / सरणी से तुलना करने के लिए। StrSimLookup संस्करण किसी स्ट्रिंग, एरे इंडेक्स या समानता मेट्रिक के रूप में अंतिम सर्वश्रेष्ठ मैच देता है।

यह कार्यान्वयन कम स्कोरिंग मैचों पर कुछ मामूली अपवादों के साथ साइमन व्हाइट की वेबसाइट पर अमेज़ॅन उदाहरण में सूचीबद्ध समान परिणाम उत्पन्न करता है; यह निश्चित नहीं है कि अंतर कहाँ में रेंगता है, VBA का स्प्लिट फ़ंक्शन हो सकता है, लेकिन मैंने जांच नहीं की है क्योंकि यह मेरे उद्देश्यों के लिए ठीक काम कर रहा है।

'Implements functions to rate how similar two strings are on
'a scale of 0.0 (completely dissimilar) to 1.0 (exactly similar)
'Source:   http://www.catalysoft.com/articles/StrikeAMatch.html
'Author: Bob Chatham, bob.chatham at gmail.com
'9/12/2010

Option Explicit

Public Function stringSimilarity(str1 As String, str2 As String) As Variant
'Simple version of the algorithm that computes the similiarity metric
'between two strings.
'NOTE: This verision is not efficient to use if you're comparing one string
'with a range of other values as it will needlessly calculate the pairs for the
'first string over an over again; use the array-optimized version for this case.

    Dim sPairs1 As Collection
    Dim sPairs2 As Collection

    Set sPairs1 = New Collection
    Set sPairs2 = New Collection

    WordLetterPairs str1, sPairs1
    WordLetterPairs str2, sPairs2

    stringSimilarity = SimilarityMetric(sPairs1, sPairs2)

    Set sPairs1 = Nothing
    Set sPairs2 = Nothing

End Function

Public Function strSimA(str1 As Variant, rRng As Range) As Variant
'Return an array of string similarity indexes for str1 vs every string in input range rRng
    Dim sPairs1 As Collection
    Dim sPairs2 As Collection
    Dim arrOut As Variant
    Dim l As Long, j As Long

    Set sPairs1 = New Collection

    WordLetterPairs CStr(str1), sPairs1

    l = rRng.Count
    ReDim arrOut(1 To l)
    For j = 1 To l
        Set sPairs2 = New Collection
        WordLetterPairs CStr(rRng(j)), sPairs2
        arrOut(j) = SimilarityMetric(sPairs1, sPairs2)
        Set sPairs2 = Nothing
    Next j

    strSimA = Application.Transpose(arrOut)

End Function

Public Function strSimLookup(str1 As Variant, rRng As Range, Optional returnType) As Variant
'Return either the best match or the index of the best match
'depending on returnTYype parameter) between str1 and strings in rRng)
' returnType = 0 or omitted: returns the best matching string
' returnType = 1           : returns the index of the best matching string
' returnType = 2           : returns the similarity metric

    Dim sPairs1 As Collection
    Dim sPairs2 As Collection
    Dim metric, bestMetric As Double
    Dim i, iBest As Long
    Const RETURN_STRING As Integer = 0
    Const RETURN_INDEX As Integer = 1
    Const RETURN_METRIC As Integer = 2

    If IsMissing(returnType) Then returnType = RETURN_STRING

    Set sPairs1 = New Collection

    WordLetterPairs CStr(str1), sPairs1

    bestMetric = -1
    iBest = -1

    For i = 1 To rRng.Count
        Set sPairs2 = New Collection
        WordLetterPairs CStr(rRng(i)), sPairs2
        metric = SimilarityMetric(sPairs1, sPairs2)
        If metric > bestMetric Then
            bestMetric = metric
            iBest = i
        End If
        Set sPairs2 = Nothing
    Next i

    If iBest = -1 Then
        strSimLookup = CVErr(xlErrValue)
        Exit Function
    End If

    Select Case returnType
    Case RETURN_STRING
        strSimLookup = CStr(rRng(iBest))
    Case RETURN_INDEX
        strSimLookup = iBest
    Case Else
        strSimLookup = bestMetric
    End Select

End Function

Public Function strSim(str1 As String, str2 As String) As Variant
    Dim ilen, iLen1, ilen2 As Integer

    iLen1 = Len(str1)
    ilen2 = Len(str2)

    If iLen1 >= ilen2 Then ilen = ilen2 Else ilen = iLen1

    strSim = stringSimilarity(Left(str1, ilen), Left(str2, ilen))

End Function

Sub WordLetterPairs(str As String, pairColl As Collection)
'Tokenize str into words, then add all letter pairs to pairColl

    Dim Words() As String
    Dim word, nPairs, pair As Integer

    Words = Split(str)

    If UBound(Words) < 0 Then
        Set pairColl = Nothing
        Exit Sub
    End If

    For word = 0 To UBound(Words)
        nPairs = Len(Words(word)) - 1
        If nPairs > 0 Then
            For pair = 1 To nPairs
                pairColl.Add Mid(Words(word), pair, 2)
            Next pair
        End If
    Next word

End Sub

Private Function SimilarityMetric(sPairs1 As Collection, sPairs2 As Collection) As Variant
'Helper function to calculate similarity metric given two collections of letter pairs.
'This function is designed to allow the pair collections to be set up separately as needed.
'NOTE: sPairs2 collection will be altered as pairs are removed; copy the collection
'if this is not the desired behavior.
'Also assumes that collections will be deallocated somewhere else

    Dim Intersect As Double
    Dim Union As Double
    Dim i, j As Long

    If sPairs1.Count = 0 Or sPairs2.Count = 0 Then
        SimilarityMetric = CVErr(xlErrNA)
        Exit Function
    End If

    Union = sPairs1.Count + sPairs2.Count
    Intersect = 0

    For i = 1 To sPairs1.Count
        For j = 1 To sPairs2.Count
            If StrComp(sPairs1(i), sPairs2(j)) = 0 Then
                Intersect = Intersect + 1
                sPairs2.Remove j
                Exit For
            End If
        Next j
    Next i

    SimilarityMetric = (2 * Intersect) / Union

End Function

@bchatham यह बहुत उपयोगी लगता है, लेकिन मैं VBA में नया हूं और कोड द्वारा चुनौती दी गई है। क्या आपके लिए एक एक्सेल फ़ाइल पोस्ट करना संभव है जो आपके योगदान का उपयोग करती है? अपने उद्देश्यों के लिए मैं एक्सेल में लगभग 1000 प्रविष्टियों के साथ इसी तरह के पहले नामों के मिलान के लिए इसका उपयोग करने की उम्मीद करता हूं (लगभग यहां: dropbox.com/s/ofdliln9zxgi882/first-names-excerpt.xlsx )। फिर मैं लोगों की खोज में मेल के समानार्थक शब्द का उपयोग करूंगा। (यह भी देखें softwarerecs.stackexchange.com/questions/38227/... )
bjornte

12

मुझे क्षमा करें, उत्तर का आविष्कार लेखक द्वारा नहीं किया गया था। यह एक प्रसिद्ध एल्गोरिथ्म है जो पहले डिजिटल उपकरण निगम द्वारा प्रस्तुत किया गया था और इसे अक्सर शिंगलिंग कहा जाता है।

http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-TN-1997-015.pdf


10

मैंने PL / pgSQL में साइमन व्हाइट के एल्गोरिथ्म का अनुवाद किया। यह मेरा योगदान है।

<!-- language: lang-sql -->

create or replace function spt1.letterpairs(in p_str varchar) 
returns varchar  as 
$$
declare

    v_numpairs integer := length(p_str)-1;
    v_pairs varchar[];

begin

    for i in 1 .. v_numpairs loop
        v_pairs[i] := substr(p_str, i, 2);
    end loop;

    return v_pairs;

end;
$$ language 'plpgsql';

--===================================================================

create or replace function spt1.wordletterpairs(in p_str varchar) 
returns varchar as
$$
declare
    v_allpairs varchar[];
    v_words varchar[];
    v_pairsinword varchar[];
begin
    v_words := regexp_split_to_array(p_str, '[[:space:]]');

    for i in 1 .. array_length(v_words, 1) loop
        v_pairsinword := spt1.letterpairs(v_words[i]);

        if v_pairsinword is not null then
            for j in 1 .. array_length(v_pairsinword, 1) loop
                v_allpairs := v_allpairs || v_pairsinword[j];
            end loop;
        end if;

    end loop;


    return v_allpairs;
end;
$$ language 'plpgsql';

--===================================================================

create or replace function spt1.arrayintersect(ANYARRAY, ANYARRAY)
returns anyarray as 
$$
    select array(select unnest($1) intersect select unnest($2))
$$ language 'sql';

--===================================================================

create or replace function spt1.comparestrings(in p_str1 varchar, in p_str2 varchar)
returns float as
$$
declare
    v_pairs1 varchar[];
    v_pairs2 varchar[];
    v_intersection integer;
    v_union integer;
begin
    v_pairs1 := wordletterpairs(upper(p_str1));
    v_pairs2 := wordletterpairs(upper(p_str2));
    v_union := array_length(v_pairs1, 1) + array_length(v_pairs2, 1); 

    v_intersection := array_length(arrayintersect(v_pairs1, v_pairs2), 1);

    return (2.0 * v_intersection / v_union);
end;
$$ language 'plpgsql'; 

मेरे PostgreSQL पर काम करता है जिसमें कोई भरपूर समर्थन नहीं है! धन्यवाद!
होस्टेन

धन्यवाद! आप Oracle SQL में यह कैसे करेंगे?
ओलिवहोम

यह पोर्ट गलत है। सटीक स्ट्रिंग वापस नहीं आती है 1.
ब्रैंडन विगफील्ड

9

स्ट्रिंग समानता मेट्रिक्स में स्ट्रिंग तुलना में उपयोग किए जाने वाले कई अलग-अलग मेट्रिक्स का अवलोकन होता है ( विकिपीडिया में एक सिंहावलोकन भी है)। इनमें से अधिकांश मेट्रिक्स एक लाइब्रेरी सिमेट्रिक्स में कार्यान्वित किए जाते हैं

फिर भी मीट्रिक का एक और उदाहरण, दिए गए अवलोकन में शामिल नहीं है उदाहरण के लिए संपीड़न दूरी ( कोलमोगोरोव की जटिलता को अनुमानित करने का प्रयास ) है, जिसे आपके द्वारा प्रस्तुत किए जाने वाले पाठों की तुलना में थोड़ा लंबा पाठ के लिए उपयोग किया जा सकता है।

आप प्राकृतिक भाषा प्रसंस्करण के अधिक व्यापक विषय को देखने पर भी विचार कर सकते हैं । ये आर पैकेज आपको जल्दी शुरू कर सकते हैं (या कम से कम कुछ विचार दे सकते हैं)।

और एक अंतिम संपादन - एसओ में इस विषय पर अन्य प्रश्नों की खोज करें, काफी संबंधित हैं।


9

एल्गोरिथ्म का एक तेज़ PHP संस्करण:

/**
 *
 * @param $str
 * @return mixed
 */
private static function wordLetterPairs ($str)
{
    $allPairs = array();

    // Tokenize the string and put the tokens/words into an array

    $words = explode(' ', $str);

    // For each word
    for ($w = 0; $w < count($words); $w ++) {
        // Find the pairs of characters
        $pairsInWord = self::letterPairs($words[$w]);

        for ($p = 0; $p < count($pairsInWord); $p ++) {
            $allPairs[$pairsInWord[$p]] = $pairsInWord[$p];
        }
    }

    return array_values($allPairs);
}

/**
 *
 * @param $str
 * @return array
 */
private static function letterPairs ($str)
{
    $numPairs = mb_strlen($str) - 1;
    $pairs = array();

    for ($i = 0; $i < $numPairs; $i ++) {
        $pairs[$i] = mb_substr($str, $i, 2);
    }

    return $pairs;
}

/**
 *
 * @param $str1
 * @param $str2
 * @return float
 */
public static function compareStrings ($str1, $str2)
{
    $pairs1 = self::wordLetterPairs(mb_strtolower($str1));
    $pairs2 = self::wordLetterPairs(mb_strtolower($str2));


    $union = count($pairs1) + count($pairs2);

    $intersection = count(array_intersect($pairs1, $pairs2));

    return (2.0 * $intersection) / $union;
}

मेरे पास डेटा के लिए (लगभग २३०० तुलना) मैं Igal Alkon समाधान के साथ ०.५ec सेकेंड का समय चल रहा था, जिसमें ०.३५ सेकेंड मेरा था।


9

सुंदर स्काला में एक संस्करण:

  def pairDistance(s1: String, s2: String): Double = {

    def strToPairs(s: String, acc: List[String]): List[String] = {
      if (s.size < 2) acc
      else strToPairs(s.drop(1),
        if (s.take(2).contains(" ")) acc else acc ::: List(s.take(2)))
    }

    val lst1 = strToPairs(s1.toUpperCase, List())
    val lst2 = strToPairs(s2.toUpperCase, List())

    (2.0 * lst2.intersect(lst1).size) / (lst1.size + lst2.size)

  }

6

यहाँ R संस्करण है:

get_bigrams <- function(str)
{
  lstr = tolower(str)
  bigramlst = list()
  for(i in 1:(nchar(str)-1))
  {
    bigramlst[[i]] = substr(str, i, i+1)
  }
  return(bigramlst)
}

str_similarity <- function(str1, str2)
{
   pairs1 = get_bigrams(str1)
   pairs2 = get_bigrams(str2)
   unionlen  = length(pairs1) + length(pairs2)
   hit_count = 0
   for(x in 1:length(pairs1)){
        for(y in 1:length(pairs2)){
            if (pairs1[[x]] == pairs2[[y]])
                hit_count = hit_count + 1
        }
   }
   return ((2.0 * hit_count) / unionlen)
}

यह एल्गोरिथम बेहतर है लेकिन बड़े डेटा के लिए काफी धीमा है। मेरा मतलब है कि अगर किसी को १०००० शब्दों की तुलना १५००० अन्य शब्दों के साथ करनी है, तो यह बहुत धीमी है। क्या हम गति के मामले में इसके प्रदर्शन को बढ़ा सकते हैं ??
indra_patil

6

इन एल्गोरिदम से प्रेरित, C99 में मार्जागो का उत्तर पोस्ट करना

double dice_match(const char *string1, const char *string2) {

    //check fast cases
    if (((string1 != NULL) && (string1[0] == '\0')) || 
        ((string2 != NULL) && (string2[0] == '\0'))) {
        return 0;
    }
    if (string1 == string2) {
        return 1;
    }

    size_t strlen1 = strlen(string1);
    size_t strlen2 = strlen(string2);
    if (strlen1 < 2 || strlen2 < 2) {
        return 0;
    }

    size_t length1 = strlen1 - 1;
    size_t length2 = strlen2 - 1;

    double matches = 0;
    int i = 0, j = 0;

    //get bigrams and compare
    while (i < length1 && j < length2) {
        char a[3] = {string1[i], string1[i + 1], '\0'};
        char b[3] = {string2[j], string2[j + 1], '\0'};
        int cmp = strcmpi(a, b);
        if (cmp == 0) {
            matches += 2;
        }
        i++;
        j++;
    }

    return matches / (length1 + length2);
}

मूल लेख के आधार पर कुछ परीक्षण :

#include <stdio.h>

void article_test1() {
    char *string1 = "FRANCE";
    char *string2 = "FRENCH";
    printf("====%s====\n", __func__);
    printf("%2.f%% == 40%%\n", dice_match(string1, string2) * 100);
}


void article_test2() {
    printf("====%s====\n", __func__);
    char *string = "Healed";
    char *ss[] = {"Heard", "Healthy", "Help",
                  "Herded", "Sealed", "Sold"};
    int correct[] = {44, 55, 25, 40, 80, 0};
    for (int i = 0; i < 6; ++i) {
        printf("%2.f%% == %d%%\n", dice_match(string, ss[i]) * 100, correct[i]);
    }
}

void multicase_test() {
    char *string1 = "FRaNcE";
    char *string2 = "fREnCh";
    printf("====%s====\n", __func__);
    printf("%2.f%% == 40%%\n", dice_match(string1, string2) * 100);

}

void gg_test() {
    char *string1 = "GG";
    char *string2 = "GGGGG";
    printf("====%s====\n", __func__);
    printf("%2.f%% != 100%%\n", dice_match(string1, string2) * 100);
}


int main() {
    article_test1();
    article_test2();
    multicase_test();
    gg_test();

    return 0;
}

5

माइकल ला वोई के भयानक सी # संस्करण पर निर्माण, इसे एक विस्तार विधि बनाने के अनुरोध के अनुसार, यहाँ मैं इसके साथ आया हूं। इस तरह से करने का प्राथमिक लाभ यह है कि आप प्रतिशत मैच के द्वारा जेनेरिक सूची को क्रमबद्ध कर सकते हैं। उदाहरण के लिए, विचार करें कि आपके पास अपनी वस्तु में "शहर" नाम का एक स्ट्रिंग फ़ील्ड है। एक उपयोगकर्ता "चेस्टर" की खोज करता है और आप मैच के अवरोही क्रम में परिणाम वापस करना चाहते हैं। उदाहरण के लिए, आप रोस्टर से पहले चेस्टर के शाब्दिक मैचों को दिखाना चाहते हैं। ऐसा करने के लिए, अपनी वस्तु में दो नए गुण जोड़ें:

    public string SearchText { get; set; }
    public double PercentMatch
    {
        get
        {
            return City.ToUpper().PercentMatchTo(this.SearchText.ToUpper());
        }
    }

फिर प्रत्येक ऑब्जेक्ट पर, SearchText को सेट करें कि उपयोगकर्ता ने क्या खोजा है। तो आप इसे आसानी से कुछ के साथ सॉर्ट कर सकते हैं:

    zipcodes = zipcodes.OrderByDescending(x => x.PercentMatch);

इसे विस्तार विधि बनाने के लिए यहाँ थोड़ा संशोधन किया गया है:

    /// <summary>
    /// This class implements string comparison algorithm
    /// based on character pair similarity
    /// Source: http://www.catalysoft.com/articles/StrikeAMatch.html
    /// </summary>
    public static double PercentMatchTo(this string str1, string str2)
    {
        List<string> pairs1 = WordLetterPairs(str1.ToUpper());
        List<string> pairs2 = WordLetterPairs(str2.ToUpper());

        int intersection = 0;
        int union = pairs1.Count + pairs2.Count;

        for (int i = 0; i < pairs1.Count; i++)
        {
            for (int j = 0; j < pairs2.Count; j++)
            {
                if (pairs1[i] == pairs2[j])
                {
                    intersection++;
                    pairs2.RemoveAt(j);//Must remove the match to prevent "GGGG" from appearing to match "GG" with 100% success

                    break;
                }
            }
        }

        return (2.0 * intersection) / union;
    }

    /// <summary>
    /// Gets all letter pairs for each
    /// individual word in the string
    /// </summary>
    /// <param name="str"></param>
    /// <returns></returns>
    private static List<string> WordLetterPairs(string str)
    {
        List<string> AllPairs = new List<string>();

        // Tokenize the string and put the tokens/words into an array
        string[] Words = Regex.Split(str, @"\s");

        // For each word
        for (int w = 0; w < Words.Length; w++)
        {
            if (!string.IsNullOrEmpty(Words[w]))
            {
                // Find the pairs of characters
                String[] PairsInWord = LetterPairs(Words[w]);

                for (int p = 0; p < PairsInWord.Length; p++)
                {
                    AllPairs.Add(PairsInWord[p]);
                }
            }
        }

        return AllPairs;
    }

    /// <summary>
    /// Generates an array containing every 
    /// two consecutive letters in the input string
    /// </summary>
    /// <param name="str"></param>
    /// <returns></returns>
    private static  string[] LetterPairs(string str)
    {
        int numPairs = str.Length - 1;

        string[] pairs = new string[numPairs];

        for (int i = 0; i < numPairs; i++)
        {
            pairs[i] = str.Substring(i, 2);
        }

        return pairs;
    }

मुझे लगता है कि आप एक बूल का उपयोग करना बेहतर होगा। कैससेन्सिटिव का उपयोग डिफ़ॉल्ट के गलत मूल्य के साथ - भले ही यह सही हो कि कार्यान्वयन ज्यादा साफ है
जॉर्डन

5

मेरा जावास्क्रिप्ट कार्यान्वयन स्ट्रिंग या स्ट्रिंग की स्ट्रिंग लेता है, और एक वैकल्पिक मंजिल (डिफ़ॉल्ट मंजिल 0.5 है)। यदि आप इसे एक स्ट्रिंग पास करते हैं, तो यह सही या गलत होगा, यह निर्भर करता है कि स्ट्रिंग का समानता स्कोर फर्श से अधिक या बराबर है या नहीं। यदि आप इसे स्ट्रिंग्स की एक सरणी पास करते हैं, तो यह उन स्ट्रिंग्स का एक सरणी लौटाएगा, जिनकी समानता स्कोर स्कोर की तुलना में फर्श से अधिक या बराबर है।

उदाहरण:

'Healed'.fuzzy('Sealed');      // returns true
'Healed'.fuzzy('Help');        // returns false
'Healed'.fuzzy('Help', 0.25);  // returns true

'Healed'.fuzzy(['Sold', 'Herded', 'Heard', 'Help', 'Sealed', 'Healthy']);
// returns ["Sealed", "Healthy"]

'Healed'.fuzzy(['Sold', 'Herded', 'Heard', 'Help', 'Sealed', 'Healthy'], 0);
// returns ["Sealed", "Healthy", "Heard", "Herded", "Help", "Sold"]

यह रहा:

(function(){
  var default_floor = 0.5;

  function pairs(str){
    var pairs = []
      , length = str.length - 1
      , pair;
    str = str.toLowerCase();
    for(var i = 0; i < length; i++){
      pair = str.substr(i, 2);
      if(!/\s/.test(pair)){
        pairs.push(pair);
      }
    }
    return pairs;
  }

  function similarity(pairs1, pairs2){
    var union = pairs1.length + pairs2.length
      , hits = 0;

    for(var i = 0; i < pairs1.length; i++){
      for(var j = 0; j < pairs2.length; j++){
        if(pairs1[i] == pairs2[j]){
          pairs2.splice(j--, 1);
          hits++;
          break;
        }
      }
    }
    return 2*hits/union || 0;
  }

  String.prototype.fuzzy = function(strings, floor){
    var str1 = this
      , pairs1 = pairs(this);

    floor = typeof floor == 'number' ? floor : default_floor;

    if(typeof(strings) == 'string'){
      return str1.length > 1 && strings.length > 1 && similarity(pairs1, pairs(strings)) >= floor || str1.toLowerCase() == strings.toLowerCase();
    }else if(strings instanceof Array){
      var scores = {};

      strings.map(function(str2){
        scores[str2] = str1.length > 1 ? similarity(pairs1, pairs(str2)) : 1*(str1.toLowerCase() == str2.toLowerCase());
      });

      return strings.filter(function(str){
        return scores[str] >= floor;
      }).sort(function(a, b){
        return scores[b] - scores[a];
      });
    }
  };
})();

1
बग / टाइपो! for(var j = 0; j < pairs1.length; j++){होना चाहिएfor(var j = 0; j < pairs2.length; j++){
Searle

3

पासा गुणांक एल्गोरिथ्म (साइमन व्हाइट / मार्जागो का जवाब) रूबी में लागू किया जाता है am_ gem

https://github.com/flori/amatch

इस मणि में कई अनुमानित मिलान और स्ट्रिंग तुलना एल्गोरिदम के कार्यान्वयन शामिल हैं: लेवेनशेटिन एडिट डिस्टेंस, सेलर्स एडिट डिस्टेंस, हैमिंगिंग डिस्टेंस, सबसे लंबी कॉमन लेन्स लंबाई, सबसे लंबी कॉमन सब्रिंग लेंथ, पेयर मेट्रिक, जोरो-विंकलर मेट्रिक ।


2

एक हास्केल संस्करण - संपादन का सुझाव देने के लिए स्वतंत्र महसूस करें क्योंकि मैंने बहुत हास्केल नहीं किया है।

import Data.Char
import Data.List

-- Convert a string into words, then get the pairs of words from that phrase
wordLetterPairs :: String -> [String]
wordLetterPairs s1 = concat $ map pairs $ words s1

-- Converts a String into a list of letter pairs.
pairs :: String -> [String]
pairs [] = []
pairs (x:[]) = []
pairs (x:ys) = [x, head ys]:(pairs ys)

-- Calculates the match rating for two strings
matchRating :: String -> String -> Double
matchRating s1 s2 = (numberOfMatches * 2) / totalLength
  where pairsS1 = wordLetterPairs $ map toLower s1
        pairsS2 = wordLetterPairs $ map toLower s2
        numberOfMatches = fromIntegral $ length $ pairsS1 `intersect` pairsS2
        totalLength = fromIntegral $ length pairsS1 + length pairsS2

2

Clojure:

(require '[clojure.set :refer [intersection]])

(defn bigrams [s]
  (->> (split s #"\s+")
       (mapcat #(partition 2 1 %))
       (set)))

(defn string-similarity [a b]
  (let [a-pairs (bigrams a)
        b-pairs (bigrams b)
        total-count (+ (count a-pairs) (count b-pairs))
        match-count (count (intersection a-pairs b-pairs))
        similarity (/ (* 2 match-count) total-count)]
    similarity))

1

पहली स्ट्रिंग की लंबाई (या वैकल्पिक रूप से दोनों मिनटों की अधिकतम / औसत / औसत लंबाई) से विभाजित, लेवेन्शिन के बारे में क्या? मेरे लिए अब तक यह काम किया है।


हालांकि, इस विषय पर एक और पोस्ट को उद्धृत करने के लिए, यह जो रिटर्न देता है वह अक्सर "अनिश्चित" होता है। यह 'इको' को 'डॉग' के समान दर्जा देता है।
Xyene

@ नोक्स: इस उत्तर के "पहले स्ट्रिंग की लंबाई से विभाजित" भाग महत्वपूर्ण है। इसके अलावा, यह टाइपोस और ट्रांसपोज़ेशन त्रुटियों के लिए बहुत प्रशंसित पासा के एल्गोरिथ्म से बेहतर प्रदर्शन करता है, और यहां तक ​​कि आम संयुग्मन (उदाहरण के लिए "तैरना" और "स्वैम" की तुलना करना)।
लोगन पिकअप

1

हे दोस्तों, मैंने इसे जावास्क्रिप्ट में एक कोशिश दी, लेकिन मैं इसके लिए नया हूं, किसी को भी इसे करने के तेज तरीके पता हैं?

function get_bigrams(string) {
    // Takes a string and returns a list of bigrams
    var s = string.toLowerCase();
    var v = new Array(s.length-1);
    for (i = 0; i< v.length; i++){
        v[i] =s.slice(i,i+2);
    }
    return v;
}

function string_similarity(str1, str2){
    /*
    Perform bigram comparison between two strings
    and return a percentage match in decimal form
    */
    var pairs1 = get_bigrams(str1);
    var pairs2 = get_bigrams(str2);
    var union = pairs1.length + pairs2.length;
    var hit_count = 0;
    for (x in pairs1){
        for (y in pairs2){
            if (pairs1[x] == pairs2[y]){
                hit_count++;
            }
        }
    }
    return ((2.0 * hit_count) / union);
}


var w1 = 'Healed';
var word =['Heard','Healthy','Help','Herded','Sealed','Sold']
for (w2 in word){
    console.log('Healed --- ' + word[w2])
    console.log(string_similarity(w1,word[w2]));
}

यह क्रियान्वयन गलत है। बिग्राम फ़ंक्शन लंबाई के इनपुट के लिए टूट जाता है। 0. स्ट्रिंग_सिमिलरिटी विधि दूसरे लूप के अंदर ठीक से नहीं टूटती है, जिससे कई बार जोड़े की गिनती हो सकती है, जिससे वापसी मान होता है जो 100% से अधिक होता है। और आप घोषणा करना xऔर भूल गए हैं y, और आपको लूप के माध्यम से लूप का उपयोग नहीं करना चाहिए for..in..( for(..;..;..)इसके बजाय उपयोग करें )।
रॉब डब्ल्यू

1

यहाँ Sørensen-Dice index (marzagao's answer) में आधारित समानता का एक और संस्करण है, यह C ++ 11 में लिखा गया है:

/*
 * Similarity based in Sørensen–Dice index.
 *
 * Returns the Similarity between _str1 and _str2.
 */
double similarity_sorensen_dice(const std::string& _str1, const std::string& _str2) {
    // Base case: if some string is empty.
    if (_str1.empty() || _str2.empty()) {
        return 1.0;
    }

    auto str1 = upper_string(_str1);
    auto str2 = upper_string(_str2);

    // Base case: if the strings are equals.
    if (str1 == str2) {
        return 0.0;
    }

    // Base case: if some string does not have bigrams.
    if (str1.size() < 2 || str2.size() < 2) {
        return 1.0;
    }

    // Extract bigrams from str1
    auto num_pairs1 = str1.size() - 1;
    std::unordered_set<std::string> str1_bigrams;
    str1_bigrams.reserve(num_pairs1);
    for (unsigned i = 0; i < num_pairs1; ++i) {
        str1_bigrams.insert(str1.substr(i, 2));
    }

    // Extract bigrams from str2
    auto num_pairs2 = str2.size() - 1;
    std::unordered_set<std::string> str2_bigrams;
    str2_bigrams.reserve(num_pairs2);
    for (unsigned int i = 0; i < num_pairs2; ++i) {
        str2_bigrams.insert(str2.substr(i, 2));
    }

    // Find the intersection between the two sets.
    int intersection = 0;
    if (str1_bigrams.size() < str2_bigrams.size()) {
        const auto it_e = str2_bigrams.end();
        for (const auto& bigram : str1_bigrams) {
            intersection += str2_bigrams.find(bigram) != it_e;
        }
    } else {
        const auto it_e = str1_bigrams.end();
        for (const auto& bigram : str2_bigrams) {
            intersection += str1_bigrams.find(bigram) != it_e;
        }
    }

    // Returns similarity coefficient.
    return (2.0 * intersection) / (num_pairs1 + num_pairs2);
}

1

मैं @ marzagao के उत्तर द्वारा इंगित एल्गोरिथ्म के शुद्ध रूबी कार्यान्वयन की तलाश में था। दुर्भाग्य से, @marzagao द्वारा इंगित लिंक टूट गया है। में @ s01ipsist जवाब है, वह गहरे लाल रंग का रत्न संकेत दिया amatch जहां कार्यान्वयन शुद्ध माणिक में नहीं है। इसलिए मैंने थोड़ा खोजा और पाया मणि fuzzy_match जो यहाँ पर शुद्ध रूबी कार्यान्वयन (हालांकि यह मणि उपयोग amatch) है । मुझे उम्मीद है कि यह मेरे जैसे किसी की मदद करेगा।

हमारी साइट का प्रयोग करके, आप स्वीकार करते हैं कि आपने हमारी Cookie Policy और निजता नीति को पढ़ और समझा लिया है।
Licensed under cc by-sa 3.0 with attribution required.