यहां एक सरल पुनरावर्तन है जो हमारे द्वारा ज्ञात नियमों का पालन करता है: (1) दोनों एक्स और वाई के कम से कम महत्वपूर्ण बिट्स सेट होते हैं क्योंकि केवल विषम गुणक एक विषम एकाधिक उपज देते हैं; (2) यदि हम X को B के उच्चतम सेट बिट के लिए सेट करते हैं, तो Y, sqrt (A) से बड़ा नहीं हो सकता है; और (3) बी में वर्तमान बिट के अनुसार एक्स या वाई में बिट्स सेट करें।
निम्नलिखित पायथन कोड का परिणाम सभी के लिए 300 पुनरावृत्तियों के रूप में हुआ, लेकिन एक यादृच्छिक जोड़ी जिसे मैंने मैट टिमरमन्स के उदाहरण कोड से चुना । लेकिन पहले एक 231,199 पुनरावृत्तियों लिया :)
from math import sqrt
def f(A, B):
i = 64
while not ((1<<i) & B):
i = i - 1
X = 1 | (1 << i)
sqrtA = int(sqrt(A))
j = 64
while not ((1<<j) & sqrtA):
j = j - 1
if (j > i):
i = j + 1
memo = {"it": 0, "stop": False, "solution": []}
def g(b, x, y):
memo["it"] = memo["it"] + 1
if memo["stop"]:
return []
if y > sqrtA or y * x > A:
return []
if b == 0:
if x * y == A:
memo["solution"].append((x, y))
memo["stop"] = True
return [(x, y)]
else:
return []
bit = 1 << b
if B & bit:
return g(b - 1, x, y | bit) + g(b - 1, x | bit, y)
else:
return g(b - 1, x | bit, y | bit) + g(b - 1, x, y)
g(i - 1, X, 1)
return memo
vals = [
(6872997084689100999, 2637233646), # 1048 checks with Matt's code
(3461781732514363153, 262193934464), # 8756 checks with Matt's code
(931590259044275343, 5343859294), # 4628 checks with Matt's code
(2390503072583010999, 22219728382), # 5188 checks with Matt's code
(412975927819062465, 9399702487040), # 8324 checks with Matt's code
(9105477787064988985, 211755297373604352), # 3204 checks with Matt's code
(4978113409908739575,67966612030), # 5232 checks with Matt's code
(6175356111962773143,1264664368613886), # 3756 checks with Matt's code
(648518352783802375, 6) # B smaller than sqrt(A)
]
for A, B in vals:
memo = f(A, B)
[(x, y)] = memo["solution"]
print "x, y: %s, %s" % (x, y)
print "A: %s" % A
print "x*y: %s" % (x * y)
print "B: %s" % B
print "x^y: %s" % (x ^ y)
print "%s iterations" % memo["it"]
print ""
आउटपुट:
x, y: 4251585939, 1616572541
A: 6872997084689100999
x*y: 6872997084689100999
B: 2637233646
x^y: 2637233646
231199 iterations
x, y: 262180735447, 13203799
A: 3461781732514363153
x*y: 3461781732514363153
B: 262193934464
x^y: 262193934464
73 iterations
x, y: 5171068311, 180154313
A: 931590259044275343
x*y: 931590259044275343
B: 5343859294
x^y: 5343859294
257 iterations
x, y: 22180179939, 107776541
A: 2390503072583010999
x*y: 2390503072583010999
B: 22219728382
x^y: 22219728382
67 iterations
x, y: 9399702465439, 43935
A: 412975927819062465
x*y: 412975927819062465
B: 9399702487040
x^y: 9399702487040
85 iterations
x, y: 211755297373604395, 43
A: 9105477787064988985
x*y: 9105477787064988985
B: 211755297373604352
x^y: 211755297373604352
113 iterations
x, y: 68039759325, 73164771
A: 4978113409908739575
x*y: 4978113409908739575
B: 67966612030
x^y: 67966612030
69 iterations
x, y: 1264664368618221, 4883
A: 6175356111962773143
x*y: 6175356111962773143
B: 1264664368613886
x^y: 1264664368613886
99 iterations
x, y: 805306375, 805306369
A: 648518352783802375
x*y: 648518352783802375
B: 6
x^y: 6
59 iterations
X*Y
याX&Y
?