यहाँ एक data.table
समाधान का उपयोग कर रहा हैfoverlaps
अतिव्यापी रिकॉर्ड का पता लगाने के लिए (जैसा कि @GenesRus द्वारा पहले ही उल्लेख किया गया है)। ओवरलैपिंग रिकॉर्ड अधिकतम के साथ रिकॉर्ड को फ़िल्टर करने के लिए समूहों को सौंपा गया है। समूह में प्राथमिकता। मैंने आपके उदाहरण डेटा में दो और रिकॉर्ड जोड़े, यह दिखाने के लिए कि यह प्रक्रिया तीन या अधिक ओवरलैपिंग रिकॉर्ड के लिए भी काम कर रही है:
संपादित करें: मैंने संशोधित किया और @ pgcudahy के समाधान का अनुवाद किया data.table
जो और भी तेज़ कोड देता है:
library(data.table)
library(lubridate)
times_df <- data.frame(
start = as_datetime(
c(
"2019-10-05 14:05:25",
"2019-10-05 17:30:20",
"2019-10-05 17:37:00",
"2019-10-06 04:43:55",
"2019-10-06 04:53:45",
"2019-10-06 04:53:46",
"2019-10-06 04:53:47"
)
),
stop = as_datetime(
c(
"2019-10-05 14:19:20",
"2019-10-05 17:45:15",
"2019-10-05 17:50:45",
"2019-10-06 04:59:00",
"2019-10-06 05:07:10",
"2019-10-06 05:07:11",
"2019-10-06 05:07:12"
)
),
priority = c(5, 3, 4, 3, 4, 5, 6)
)
resultDT <- setDT(times_df, key="start")[!(stop >= shift(start, type="lead", fill = TRUE) & priority > shift(priority, type="lead", fill = TRUE)) &
!(start <= shift(stop, type="lag", fill = FALSE) & priority > shift(priority, type="lag", fill = TRUE))]
# old approach ------------------------------------------------------------
# times_dt <- as.data.table(times_df)
# setkey(times_dt, start, stop)[, index := .I]
# overlaps_dt <- foverlaps(times_dt, times_dt, type = "any", which = TRUE)[xid != yid][, group := fifelse(xid > yid, yes = paste0(yid, "_", xid), no = paste0(xid, "_", yid))]
# overlaps_merged <- merge(times_dt, overlaps_dt, by.x = "index", by.y = "xid")[, .(delete_index = index[priority == max(priority)]), by = "group"]
# result_dt <- times_dt[!unique(overlaps_merged$delete_index)][, index := NULL]
अधिक जानकारी के लिए कृपया देखें ?foverlaps
- ओवरलैप मानी जाने वाली चीज़ों को नियंत्रित करने के लिए कुछ और उपयोगी सुविधाएँ लागू हैं जैसे कि maxgap
, minoverlap
या type
(कोई भी, भीतर, शुरू, अंत और बराबर)।
अद्यतन - नया बेंचमार्क
Unit: microseconds
expr min lq mean median uq max neval
Paul 25572.550 26105.2710 30183.930 26514.342 29614.272 153810.600 100
MKa 5100.447 5276.8350 6508.333 5401.275 5832.270 23137.879 100
pgcudahy 3330.243 3474.4345 4284.640 3556.802 3748.203 21241.260 100
ismirsehregal 711.084 913.3475 1144.829 1013.096 1433.427 2316.159 100
बेंचमार्क कोड:
#### library ----
library(dplyr)
library(lubridate)
library(igraph)
library(data.table)
library(microbenchmark)
#### data ----
times_df <- data.frame(
start = as_datetime(
c(
"2019-10-05 14:05:25",
"2019-10-05 17:30:20",
"2019-10-05 17:37:00",
"2019-10-06 04:43:55",
"2019-10-06 04:53:45",
"2019-10-06 04:53:46",
"2019-10-06 04:53:47"
)
),
stop = as_datetime(
c(
"2019-10-05 14:19:20",
"2019-10-05 17:45:15",
"2019-10-05 17:50:45",
"2019-10-06 04:59:00",
"2019-10-06 05:07:10",
"2019-10-06 05:07:11",
"2019-10-06 05:07:12"
)
),
priority = c(5, 3, 4, 3, 4, 5, 6)
)
times_tib <- as_tibble(times_df)
times_dt <- as.data.table(times_df)
#### group_interval function ----
# buffer to take a form similar to: days(1), weeks(2), etc.
group_interval <- function(start, end, buffer = 0) {
dat <- tibble(rid = 1:length(start),
start = start,
end = end,
intervals = case_when(!is.na(start) & !is.na(end) ~ interval(start, end),
is.na(start) ~ interval(end, end),
is.na(end) ~ interval(start, start),
TRUE ~ interval(NA, NA)))
# apply buffer period to intervals
int_start(dat$intervals) <- int_start(dat$intervals) - buffer + seconds(0.01)
int_end(dat$intervals) <- int_end(dat$intervals) + buffer - seconds(0.01)
df_overlap <- bind_cols(
expand.grid(dat$rid, dat$rid), # make a 2 col table with every combination of id numbers
expand.grid(dat$intervals, dat$intervals)) %>% # make a combination of every interval
mutate(overlap = int_overlaps(.data$Var11, .data$Var21)) %>% # determine if intervals overlap
rename("row" = "Var1", "col" = "Var2")
# Find groups via graph theory See igraph package
dat_graph <- graph_from_data_frame(filter(df_overlap, overlap) %>% select(row, col))
groups <- components(dat_graph)$membership[df_overlap$row]
# create a 2 column df with row (index) and group number, arrange on row number and return distinct values
df_groups <- tibble(row = as.integer(names(groups)), group = groups) %>%
unique()
# returns
left_join(select(dat, rid), df_groups, by = c("rid" = "row"))$group
}
#### benchmark ----
library(igraph)
library(data.table)
library(dplyr)
library(lubridate)
library(microbenchmark)
df_Paul <- df_MKa <- df_pgcudahy <- df_ismirsehregal <- times_df <- data.frame(
start = as_datetime(
c(
"2019-10-05 14:05:25",
"2019-10-05 17:30:20",
"2019-10-05 17:37:00",
"2019-10-06 04:43:55",
"2019-10-06 04:53:45",
"2019-10-06 04:53:46",
"2019-10-07 06:00:00",
"2019-10-07 06:10:00",
"2019-10-07 06:20:00",
"2019-10-08 06:00:00",
"2019-10-08 06:10:00",
"2019-10-08 06:20:00",
"2019-10-09 03:00:00",
"2019-10-09 03:10:00",
"2019-10-10 03:00:00",
"2019-10-10 03:10:00",
"2019-10-11 05:00:00",
"2019-10-11 05:00:00")
),
stop = as_datetime(
c(
"2019-10-05 14:19:20",
"2019-10-05 17:45:15",
"2019-10-05 17:50:45",
"2019-10-06 04:59:00",
"2019-10-06 05:07:10",
"2019-10-06 05:07:11",
"2019-10-07 06:18:00",
"2019-10-07 06:28:00",
"2019-10-07 06:38:00",
"2019-10-08 06:18:00",
"2019-10-08 06:28:00",
"2019-10-08 06:38:00",
"2019-10-09 03:30:00",
"2019-10-09 03:20:00",
"2019-10-10 03:30:00",
"2019-10-10 03:20:00",
"2019-10-11 05:40:00",
"2019-10-11 05:40:00")
),
priority = c(5, 3, 4, 3, 4, 5, 4, 3, 4, 3, 4, 3, 1, 2, 2, 1, 3, 4)
)
benchmarks <- microbenchmark(Paul = {
group_interval <- function(start, end, buffer = 0) {
dat <- tibble(rid = 1:length(start),
start = start,
end = end,
intervals = case_when(!is.na(start) & !is.na(end) ~ interval(start, end),
is.na(start) ~ interval(end, end),
is.na(end) ~ interval(start, start),
TRUE ~ interval(NA, NA)))
int_start(dat$intervals) <- int_start(dat$intervals) - buffer + seconds(0.01)
int_end(dat$intervals) <- int_end(dat$intervals) + buffer - seconds(0.01)
df_overlap <- bind_cols(
expand.grid(dat$rid, dat$rid), # make a 2 col table with every combination of id numbers
expand.grid(dat$intervals, dat$intervals)) %>% # make a combination of every interval
mutate(overlap = int_overlaps(.data$Var11, .data$Var21)) %>% # determine if intervals overlap
rename("row" = "Var1", "col" = "Var2")
dat_graph <- graph_from_data_frame(filter(df_overlap, overlap) %>% select(row, col))
groups <- components(dat_graph)$membership[df_overlap$row]
df_groups <- tibble(row = as.integer(names(groups)), group = groups) %>%
unique()
left_join(select(dat, rid), df_groups, by = c("rid" = "row"))$group
}
times_tib <- as_tibble(df_Paul)
mutate(times_tib, group = group_interval(start, stop)) %>%
group_by(group) %>%
top_n(1, desc(priority)) %>%
ungroup() %>%
select(-group)
},
MKa = {
df_MKa$id <- 1:nrow(df_MKa)
# Create consolidated df which we will use to check if stop date is in between start and stop
my_df <- bind_rows(replicate(n = nrow(df_MKa), expr = df_MKa, simplify = FALSE))
my_df$stop_chk <- rep(df_MKa$stop, each = nrow(df_MKa))
# Flag if stop date sits in between start and stop
my_df$chk <- my_df$stop_chk >= my_df$start & my_df$stop_chk <= my_df$stop
my_df$chk_id <- df_MKa[match(my_df$stop_chk, df_MKa$stop), "id"]
# Using igrpah to cluster ids to create unique groups
# this will identify any overlapping groups
library(igraph)
g <- graph.data.frame(my_df[my_df$chk == TRUE, c("id", "chk_id")])
df_g <- data.frame(clusters(g)$membership)
df_g$chk_id <- row.names(df_g)
# copy the unique groups to the df
my_df$new_id <- df_g[match(my_df$chk_id, df_g$chk_id), "clusters.g..membership"]
my_df %>%
filter(chk == TRUE) %>%
arrange(priority) %>%
filter(!duplicated(new_id)) %>%
select(start, stop, priority) %>%
arrange(start)
}, pgcudahy = {
df_pgcudahy %>%
arrange(start) %>%
mutate(remove1 = ifelse((stop >= lead(start, default=FALSE)) &
(priority > lead(priority, default=(max(priority) + 1))), TRUE, FALSE)) %>%
mutate(remove2 = ifelse((start <= lag(stop, default=FALSE)) &
(priority > lag(priority, default=(max(priority) + 1))), TRUE, FALSE)) %>%
filter(remove1 == FALSE & remove2 == FALSE) %>%
select(1:3)
}, ismirsehregal = {
setDT(df_ismirsehregal, key="start")[!(stop >= shift(start, type="lead", fill = TRUE) & priority > shift(priority, type="lead", fill = TRUE)) &
!(start <= shift(stop, type="lag", fill = FALSE) & priority > shift(priority, type="lag", fill = TRUE))]
})
benchmarks
combn
, हालांकि यह बहुत महंगी हो सकती है यदि आपको बहुत सी पंक्तियाँ मिल गई हैं।times_df %>% mutate(interval = interval(start, stop)) %>% {combn(nrow(.), 2, function(x) if (int_overlaps(.$interval[x[1]], .$interval[x[2]])) x[which.min(.$priority[x])], simplify = FALSE)} %>% unlist() %>% {slice(times_df, -.)}