एकल स्थिति के लिए, अर्थात। ( 'employrate'] > 70 )
country employrate alcconsumption
0 Afghanistan 55.7000007629394 .03
1 Albania 51.4000015258789 7.29
2 Algeria 50.5 .69
3 Andorra 10.17
4 Angola 75.6999969482422 5.57
इसे इस्तेमाल करो:
df.loc[df['employrate'] > 70, 'employrate'] = 7
country employrate alcconsumption
0 Afghanistan 55.700001 .03
1 Albania 51.400002 7.29
2 Algeria 50.500000 .69
3 Andorra nan 10.17
4 Angola 7.000000 5.57
इसलिए यहाँ सिंटैक्स है:
df.loc[<mask>(here mask is generating the labels to index) , <optional column(s)> ]
कई स्थितियों के लिए अर्थात। (df['employrate'] <=55) & (df['employrate'] > 50)
इसे इस्तेमाल करो:
df['employrate'] = np.where(
(df['employrate'] <=55) & (df['employrate'] > 50) , 11, df['employrate']
)
out[108]:
country employrate alcconsumption
0 Afghanistan 55.700001 .03
1 Albania 11.000000 7.29
2 Algeria 11.000000 .69
3 Andorra nan 10.17
4 Angola 75.699997 5.57
इसलिए यहाँ सिंटैक्स है:
df['<column_name>'] = np.where((<filter 1> ) & (<filter 2>) , <new value>, df['column_name'])