Ggplot2 में facet_wrap और तराजू = "मुक्त" के साथ व्यक्तिगत अक्ष सीमा निर्धारित करना


116

मैं अनुमानित मूल्य बनाम अवशिष्ट के एक भूखंड के साथ-साथ वास्तविक रूप से अनुमानित बनाम बनाम वास्तविक मूल्यों को देखने के लिए एक मुखरित साजिश रच रहा हूं। मैं shinyविभिन्न प्रशिक्षण मापदंडों का उपयोग करके मॉडलिंग प्रयासों के परिणामों का पता लगाने में मदद करने के लिए उपयोग कर रहा हूं । मैं मॉडल को 85% डेटा के साथ प्रशिक्षित करता हूं, शेष 15% पर परीक्षण करता हूं, और हर बार वास्तविक / अनुमानित मूल्यों को इकट्ठा करते हुए, इस 5 बार दोहराता हूं। अवशिष्टों की गणना करने के बाद, मेरा data.frameऐसा दिखता है:

head(results)
       act     pred       resid
2 52.81000 52.86750 -0.05750133
3 44.46000 42.76825  1.69175252
4 54.58667 49.00482  5.58184181
5 36.23333 35.52386  0.70947731
6 53.22667 48.79429  4.43237981
7 41.72333 41.57504  0.14829173

मैं क्या चाहता हूँ:

  • predबनाम actऔर predबनाम के साइड प्लॉट द्वाराresid
  • predबनाम के actलिए एक्स / वाई रेंज / सीमाएं समान होने के लिए, आदर्श रूप से min(min(results$act), min(results$pred))सेmax(max(results$act), max(results$pred))
  • वास्तविक बनाम पूर्वानुमानित कथानक के लिए x / y श्रेणी / सीमाएं predबनाम इससे प्रभावित resid नहीं होने के लिए क्या करें। xकेवल अनुमानित मूल्यों पर और yकेवल अवशिष्ट सीमा से अधिक के लिए प्लॉटिंग ठीक है।

दोनों भूखंडों को एक साथ देखने के लिए, मैं डेटा को पिघलाता हूं:

library(reshape2)
plot <- melt(results, id.vars = "pred")

अब प्लॉट करें:

library(ggplot2)
p <- ggplot(plot, aes(x = pred, y = value)) + geom_point(size = 2.5) + theme_bw()
p <- p + facet_wrap(~variable, scales = "free")

print(p)

मैं जो चाहता हूं, उसके बहुत करीब है:

यहां छवि विवरण दर्ज करें

मैं जो चाहता हूं वह वास्तविक बनाम के लिए x और y पर्वतमाला के लिए समान है, लेकिन मुझे यकीन नहीं है कि इसे कैसे निर्दिष्ट किया जाए, और मैं नहीं आवश्यकता है कि भविष्यवाणी बनाम अवशिष्ट साजिश के लिए किया गया रेंज बिल्कुल अलग हैं।

मैंने दोनों के लिए कुछ इस तरह जोड़ने की कोशिश की scale_x_continousऔर scale_y_continuous:

min_xy <- min(min(plot$pred), min(plot$value))
max_xy <- max(max(plot$pred), max(plot$value))

p <- ggplot(plot, aes(x = pred, y = value)) + geom_point(size = 2.5) + theme_bw()
p <- p + facet_wrap(~variable, scales = "free")
p <- p + scale_x_continuous(limits = c(min_xy, max_xy))
p <- p + scale_y_continuous(limits = c(min_xy, max_xy))

print(p)

लेकिन यह min()अवशिष्ट मूल्यों को चुनता है ।

यहां छवि विवरण दर्ज करें

एक अंतिम विचार मेरे पास पिघलने से पहले न्यूनतम actऔर predचर के मूल्य को संग्रहीत करने का है , और फिर उन्हें मेल किए गए डेटा फ्रेम में जोड़ने के लिए निर्देशित करना है जिसमें वे दिखाई देते हैं:

head(results)
       act     pred       resid
2 52.81000 52.86750 -0.05750133
3 44.46000 42.76825  1.69175252
4 54.58667 49.00482  5.58184181
5 36.23333 35.52386  0.70947731

min_xy <- min(min(results$act), min(results$pred))
max_xy <- max(max(results$act), max(results$pred))

plot <- melt(results, id.vars = "pred")

plot <- rbind(plot, data.frame(pred = c(min_xy, max_xy),
  variable = c("act", "act"), value = c(max_xy, min_xy)))

p <- ggplot(plot, aes(x = pred, y = value)) + geom_point(size = 2.5) + theme_bw()
p <- p + facet_wrap(~variable, scales = "free")

print(p)

यह वही करता है जो मैं चाहता हूं, इस अपवाद के साथ कि अंक दिखाई देते हैं:

यहां छवि विवरण दर्ज करें

इस तरह से कुछ करने के लिए कोई सुझाव?


मैंने इस विचार को जोड़ने के लिए देखा geom_blank(), लेकिन मुझे यकीन नहीं है कि aes()बिट को कैसे निर्दिष्ट किया जाए और क्या यह ठीक से काम करता है, या इसके geom_point()बराबर क्या हिस्टोग्राम के उपयोग के लिए है aes(y = max(..count..))


यहाँ डेटा (मेरे वास्तविक, पूर्वानुमानित और पिघलने से पहले के अवशिष्ट मूल्यों) के साथ खेलने के लिए है:

> dput(results)
structure(list(act = c(52.81, 44.46, 54.5866666666667, 36.2333333333333, 
53.2266666666667, 41.7233333333333, 35.2966666666667, 30.6833333333333, 
39.25, 35.8866666666667, 25.1, 29.0466666666667, 23.2766666666667, 
56.3866666666667, 42.92, 41.57, 27.92, 23.16, 38.0166666666667, 
61.8966666666667, 37.41, 41.6333333333333, 35.9466666666667, 
48.9933333333333, 30.5666666666667, 32.08, 40.3633333333333, 
53.2266666666667, 64.6066666666667, 38.5366666666667, 41.7233333333333, 
25.78, 33.4066666666667, 27.8033333333333, 39.3266666666667, 
48.9933333333333, 25.2433333333333, 32.67, 55.17, 42.92, 54.5866666666667, 
23.16, 64.6066666666667, 40.7966666666667, 39.0166666666667, 
41.6333333333333, 35.8866666666667, 25.1, 23.2766666666667, 44.46, 
34.2166666666667, 40.8033333333333, 24.5766666666667, 35.73, 
61.8966666666667, 62.1833333333333, 74.6466666666667, 39.4366666666667, 
36.6, 27.1333333333333), pred = c(52.8675013282404, 42.7682474758679, 
49.0048248585123, 35.5238560262515, 48.7942868566949, 41.5750416040131, 
33.9548164913007, 29.9787449128663, 37.6443975781139, 36.7196211666685, 
27.6043278172077, 27.0615724310721, 31.2073056885252, 55.0886903524179, 
43.0895814712768, 43.0895814712768, 32.3549865881578, 26.2428426737583, 
36.6926037128343, 56.7987490221996, 45.0370788180147, 41.8231642271826, 
38.3297859332601, 49.5343916620086, 30.8535641206809, 29.0117492750411, 
36.9767968381391, 49.0826677983065, 54.4678549541069, 35.5059204731218, 
41.5333417555995, 27.6069075391361, 31.2404889715121, 27.8920960978598, 
37.8505531149324, 49.2616631533957, 30.366837650159, 31.1623492639066, 
55.0456078770405, 42.772538591063, 49.2419293590535, 26.1963523976241, 
54.4080781796616, 44.9796700541254, 34.6996927469131, 41.6227713664027, 
36.8449646519306, 27.5318686661673, 31.6641793552795, 42.8198894266632, 
40.5769177148146, 40.5769177148146, 29.3807781312816, 36.8579132935989, 
55.5617033901752, 55.8097119335638, 55.1041728261666, 43.6094641699075, 
37.0674887276681, 27.3876960746536), resid = c(-0.0575013282403773, 
1.69175252413213, 5.58184180815435, 0.709477307081826, 4.43237980997177, 
0.148291729320228, 1.34185017536599, 0.704588420467079, 1.60560242188613, 
-0.832954500001826, -2.50432781720766, 1.98509423559461, -7.93063902185855, 
1.29797631424874, -0.169581471276786, -1.51958147127679, -4.43498658815778, 
-3.08284267375831, 1.32406295383237, 5.09791764446704, -7.62707881801468, 
-0.189830893849219, -2.38311926659339, -0.541058328675241, -0.286897454014273, 
3.06825072495888, 3.38653649519422, 4.14399886836018, 10.1388117125598, 
3.03074619354486, 0.189991577733821, -1.82690753913609, 2.16617769515461, 
-0.088762764526507, 1.47611355173427, -0.268329820062384, -5.12350431682565, 
1.5076507360934, 0.124392122959534, 0.147461408936991, 5.34473730761318, 
-3.03635239762411, 10.1985884870051, -4.18300338745873, 4.31697391975358, 
0.0105619669306023, -0.958297985263961, -2.43186866616734, -8.38751268861282, 
1.64011057333683, -6.36025104814794, 0.226415618518729, -4.80411146461488, 
-1.1279132935989, 6.33496327649151, 6.37362139976954, 19.5424938405001, 
-4.17279750324084, -0.467488727668119, -0.254362741320246)), .Names = c("act", 
"pred", "resid"), row.names = c(2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 
10L, 11L, 12L, 13L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 
24L, 25L, 26L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 
38L, 39L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 
52L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L
), class = "data.frame")

बस जिज्ञासु - एक ही ग्राफ में वास्तविक और अवशिष्ट की साजिश क्यों नहीं?
रिकार्डो सपोर्टा

2
मैं भूखंडों को अलग से बनाऊंगा और फिर उपयोग करूंगा grid.arrange
जोरान

@RicardoSaporta क्या एक Google छवि है जिसे आप एक उदाहरण के रूप में लिंक कर सकते हैं? क्या आप सुझाव दे रहे हैं, मेल-पोस्ट किए गए डेटा का उपयोग करते हुए, कि मैं बस ggplot(plot, aes(x = pred, y = value)) + geom_point()कोई फेसिंग नहीं करूंगा? क्या यह वास्तव में अवशिष्ट के पैमाने को सिकोड़ना नहीं होगा जिससे गैर-यादृच्छिकता / तिरछा का पता लगाना मुश्किल हो जाए?
हेंडी

1
मेरे अन्य टिप्पणी है कि Facetting है है कम कोड ... मैं सिर्फ पिघल, तब तक साजिश और पहलू था variableद्वारा बनाई गई मूल्य melt()। फिर, मुझे लगता है कि मैं lapplyविभिन्न संयोजनों की साजिश रचने के लिए बनाई गई सूची में इन्हें संग्रहीत कर सकता हूं । इनपुट के लिए धन्यवाद। यदि आप एक gridसमाधान बनाना चाहते हैं, तो मैं उत्तर को स्वीकार कर सकता हूं, हालांकि यदि हम जिस मार्ग को लेते हैं, यह अन्य- gridआधारित समाधानों का एक डुप्लिकेट हो सकता है ।
हेन्डी

1
@ जोरान और मुझे लगता है कि मैं नियमित रूप से लोगों को सलाह दे रहा हूं कि वे उपयोग करें grid.arrangeजो लगभग पूरी तरह से लेआउट को गड़बड़ करते हैं। मैं कामना करता हूं कि लंबे समय तक चलने वाले कीड़े को संबोधित किया जाए।
बपतिस्मा

जवाबों:


115

यहाँ एक डमी geom_blankपरत के साथ कुछ कोड है ,

range_act <- range(range(results$act), range(results$pred))

d <- reshape2::melt(results, id.vars = "pred")

dummy <- data.frame(pred = range_act, value = range_act,
                    variable = "act", stringsAsFactors=FALSE)

ggplot(d, aes(x = pred, y = value)) +
  facet_wrap(~variable, scales = "free") +
  geom_point(size = 2.5) + 
  geom_blank(data=dummy) + 
  theme_bw()

यहां छवि विवरण दर्ज करें


11
इसका एक अच्छा संस्करण है expand_limits(pred=range_act, value=range_act), जो उपयोग करता है geom_blankलेकिन उपयोग करने के लिए सरल है।
ेरेगॉन

6
यह केवल सीमा का विस्तार करता है (लेकिन अनुबंध नहीं करता है) क्या सीमा को छोटा करने का कोई तरीका है? @ बपतिस्मा देने वाला
इंद्रनील

32

मुझे यकीन नहीं है कि मैं समझता हूं कि आप क्या चाहते हैं, लेकिन मैं जो समझ रहा हूं उसके आधार पर

x पैमाना समान प्रतीत होता है, यह y पैमाना है जो समान नहीं है, और ऐसा इसलिए है क्योंकि आप तराजू निर्दिष्ट करते हैं "नि: शुल्क"

आप तराजू निर्दिष्ट कर सकते हैं = "free_x" केवल x को मुक्त होने की अनुमति देते हैं (इस मामले में यह उसी तरह है जैसे कि पूर्व में परिभाषा के अनुसार सीमा होती है)

p <- ggplot(plot, aes(x = pred, y = value)) + geom_point(size = 2.5) + theme_bw()
p <- p + facet_wrap(~variable, scales = "free_x")

मेरे लिए काम किया, चित्र देखें

यहां छवि विवरण दर्ज करें

मुझे लगता है कि आप इसे बहुत मुश्किल बना रहे थे - मुझे लगता है कि एक बार मिनिमम और मैक्सिमम फॉर्मूले के आधार पर लिमिट्स को डिफाइन करते हुए याद किया जा सकता है और अगर मुझे लगता है कि यह केवल उन्हीं वैल्यूज का इस्तेमाल करता है, लेकिन मुझे कोड नहीं मिल रहा है


7

आप अपनी इच्छित y-अक्ष श्रेणी को सेट करने के लिए ord_cartesian कमांड के साथ सीमा भी निर्दिष्ट कर सकते हैं, जैसे पिछले पोस्ट उपयोग तराजू में = free_x

p <- ggplot(plot, aes(x = pred, y = value)) +
     geom_point(size = 2.5) +
     theme_bw()+
     coord_cartesian(ylim = c(-20, 80))
p <- p + facet_wrap(~variable, scales = "free_x")
p

यहां छवि विवरण दर्ज करें

हमारी साइट का प्रयोग करके, आप स्वीकार करते हैं कि आपने हमारी Cookie Policy और निजता नीति को पढ़ और समझा लिया है।
Licensed under cc by-sa 3.0 with attribution required.