इसी तरह के समाधान की तलाश करने और पर्याप्त रूप से कुछ भी लचीला नहीं खोजने के बाद, मैंने इसके लिए अपना खुद का फ़ंक्शन लिखने का फैसला किया। यह आपको अपनी इच्छानुसार प्रति समूह में कई बार होने की अनुमति देता है और एक समूह की चौड़ाई के साथ-साथ समूहों के भीतर सलाखों की व्यक्तिगत चौड़ाई दोनों को निर्दिष्ट करता है।
का आनंद लें:
from matplotlib import pyplot as plt
def bar_plot(ax, data, colors=None, total_width=0.8, single_width=1, legend=True):
"""Draws a bar plot with multiple bars per data point.
Parameters
----------
ax : matplotlib.pyplot.axis
The axis we want to draw our plot on.
data: dictionary
A dictionary containing the data we want to plot. Keys are the names of the
data, the items is a list of the values.
Example:
data = {
"x":[1,2,3],
"y":[1,2,3],
"z":[1,2,3],
}
colors : array-like, optional
A list of colors which are used for the bars. If None, the colors
will be the standard matplotlib color cyle. (default: None)
total_width : float, optional, default: 0.8
The width of a bar group. 0.8 means that 80% of the x-axis is covered
by bars and 20% will be spaces between the bars.
single_width: float, optional, default: 1
The relative width of a single bar within a group. 1 means the bars
will touch eachother within a group, values less than 1 will make
these bars thinner.
legend: bool, optional, default: True
If this is set to true, a legend will be added to the axis.
"""
if colors is None:
colors = plt.rcParams['axes.prop_cycle'].by_key()['color']
n_bars = len(data)
bar_width = total_width / n_bars
bars = []
for i, (name, values) in enumerate(data.items()):
x_offset = (i - n_bars / 2) * bar_width + bar_width / 2
for x, y in enumerate(values):
bar = ax.bar(x + x_offset, y, width=bar_width * single_width, color=colors[i % len(colors)])
bars.append(bar[0])
if legend:
ax.legend(bars, data.keys())
if __name__ == "__main__":
data = {
"a": [1, 2, 3, 2, 1],
"b": [2, 3, 4, 3, 1],
"c": [3, 2, 1, 4, 2],
"d": [5, 9, 2, 1, 8],
"e": [1, 3, 2, 2, 3],
"f": [4, 3, 1, 1, 4],
}
fig, ax = plt.subplots()
bar_plot(ax, data, total_width=.8, single_width=.9)
plt.show()
आउटपुट: