fmark ने पहले ही सवाल का जवाब दे दिया, लेकिन यहां कुछ उदाहरण OSGEO पायथन कोड है, जो मैंने एक रैस्टर (tif) को एक NumPy ऐरे में पढ़ने के लिए लिखा था, डेटा रिकॉल करता है और फिर इसे एक नई tif फाइल में लिखता है। आप किसी भी गदल समर्थित प्रारूप को पढ़ और लिख सकते हैं।
"""
Example of raster reclassification using OpenSource Geo Python
"""
import numpy, sys
from osgeo import gdal
from osgeo.gdalconst import *
# register all of the GDAL drivers
gdal.AllRegister()
# open the image
inDs = gdal.Open("c:/workshop/examples/raster_reclass/data/cropland_40.tif")
if inDs is None:
print 'Could not open image file'
sys.exit(1)
# read in the crop data and get info about it
band1 = inDs.GetRasterBand(1)
rows = inDs.RasterYSize
cols = inDs.RasterXSize
cropData = band1.ReadAsArray(0,0,cols,rows)
listAg = [1,5,6,22,23,24,41,42,28,37]
listNotAg = [111,195,141,181,121,122,190,62]
# create the output image
driver = inDs.GetDriver()
#print driver
outDs = driver.Create("c:/workshop/examples/raster_reclass/output/reclass_40.tif", cols, rows, 1, GDT_Int32)
if outDs is None:
print 'Could not create reclass_40.tif'
sys.exit(1)
outBand = outDs.GetRasterBand(1)
outData = numpy.zeros((rows,cols), numpy.int16)
for i in range(0, rows):
for j in range(0, cols):
if cropData[i,j] in listAg:
outData[i,j] = 100
elif cropData[i,j] in listNotAg:
outData[i,j] = -100
else:
outData[i,j] = 0
# write the data
outBand.WriteArray(outData, 0, 0)
# flush data to disk, set the NoData value and calculate stats
outBand.FlushCache()
outBand.SetNoDataValue(-99)
# georeference the image and set the projection
outDs.SetGeoTransform(inDs.GetGeoTransform())
outDs.SetProjection(inDs.GetProjection())
del outData