केंद्र में बीम के विक्षेपण का ढलान


0

Image1

IM2

पहली तस्वीर में, यह कहा गया है कि डाई / dx केंद्र में = 0, हालांकि, दूसरी फोटो (वेबसाइट) में, यह कहा गया है कि सीमा = 0 पर डाई / dx, जो सही है? अब मैं उलझन में हूँ http://www.geom.uiuc.edu/education/calc-init/static-beam/support.html


वेबसाइट वास्तव में बताती है (सही ढंग से) कि d2ydx2=0, नहीं dydx
वसाबी

जवाबों:


2

अगर θ के रूप में एक ही मात्रा माना जाता है dy/dxतस्वीर को खींचा और गलत तरीके से लेबल किया गया है।

समीकरण सही ढंग से बताते हैं कि x=2, [dy/dx]AC=[dy/dx]BC, लेकिन इसका मतलब यह नहीं है [dy/dx]AC=[dy/dx]BC=0!

दूसरी ओर, θ आपकी पोस्ट में परिभाषित नहीं की गई कुछ अन्य मात्रा हो सकती है - जिस स्थिति में हम अनुमान नहीं लगा सकते हैं कि इसका क्या अर्थ है।


फिर, किन परिस्थितियों में थीटा = 0 ??
केल्विनमैक्स 0

1
मुझे यह विश्वास करना मुश्किल है θ इसके अलावा कुछ भी है dydx, क्योंकि यह छोटे विक्षेपण और घुमाव के लिए मानक धारणा है। तो हाँ, मुझे लगता है कि सवाल सिर्फ गलत है।
वसाबी

1
@kelvinmacks: मैं पांडित्य ध्वनि के लिए माफी माँगता हूँ, लेकिन θ=dydx=0तब होता है जब विक्षेपण क्षैतिज होता है (या, अधिक सटीक, बीम के मूल अनुदैर्ध्य अक्ष के समानांतर)। एक सरल-समर्थित बीम के लिए जैसे कि आपने हमें दिखाया है, जो केवल मध्य-स्पैन में होता है जब लोडिंग सममित होता है। यदि लोडिंग असममित है (जैसे कि इस मामले में), तो कोई प्राथमिकता जानने का कोई तरीका नहीं है । आपको गणित करने और यह पता लगाने की आवश्यकता है कि कहां हैθ=0 (अर्थ θ=0है अपने सीमा की स्थिति में से एक)।
वसाबी

इस मामले में डाई / डीएक्स = 0 निर्धारित करने का कोई तरीका नहीं है। केवल मैथ्स करने से डाई / dx = 0 मिल सकता है ... लेकिन, ग्राफ के आकार से, हम कह सकते हैं कि ग्राफ के मध्य में, स्थानीय न्यूनतम होता है, इसलिए यह वह बिंदु है जहां डाई / dx = 0, सही है?
केल्विनमैक्स 11

@ दयाबी, कब होगा विचलन क्षैतिज? मैं यह कल्पना नहीं कर सकता
केल्विनमैक
हमारी साइट का प्रयोग करके, आप स्वीकार करते हैं कि आपने हमारी Cookie Policy और निजता नीति को पढ़ और समझा लिया है।
Licensed under cc by-sa 3.0 with attribution required.