सीईएस उपयोगिता फ़ंक्शन में कोब-डगलस उपयोगिता फ़ंक्शन प्राप्त करने के लिए मापदंडों को एकता में जोड़ने की आवश्यकता है?


3

सीईएस उपयोगिता फ़ंक्शन पर विचार करें

U(x,y)=(axc+byc)1c

क्या यह सही है कि हमारे पास डगलस यूटिलिटी फ़ंक्शन को रूप में प्राप्त करने के लिए होना चाहिए ?a+b=1c0



1
@Oliv यह धागा निश्चित रूप से आपके द्वारा बताए गए धागे का एक प्रकार है, और मेरा मूल उद्देश्य एक उत्तर पोस्ट करने के लिए था, जिससे कि और अधिक दृश्यमान की आवश्यकता हो । मुझे स्व-प्रश्नोत्तर बनाने का कारण यह था कि आपके द्वारा उल्लिखित प्रश्न को बंद कर दिया गया था और सिस्टम द्वारा कोई नए उत्तर स्वीकार नहीं किए गए थे। a+b=1
एलेकोस पापाडोपौलोस

जवाबों:


3

हाँ।

लिखना

(1)U(x,y)=(axc+byc)1c=exp{1cln(axc+byc)}

अब अगर तो , अभिव्यक्तिa+b=1c0

(2)ln(axc+byc)c

एक अनिश्चित फॉर्म होगा और इसलिए हम इसे प्राप्त करने के लिए L'Hopital के नियम को लागू कर सकते हैं0/0

1caxclnx+byclnyaxcbycaa+blnx+ba+blny,c0

जहाँ हमने ग्रहण किया ।a+b=1

इसलिए (घातीय कार्य की एकरूप निरंतरता से)

c0,U(x,y)=exp{1cln(axc+byc)}exp{alnx+blny}=xayb

लेकिन अगर , तो , eq में अंश में लॉगरिदम का तर्क। एकता के बराबर नहीं होगा, और इसलिए लघुगणक शून्य के बराबर नहीं होगा (जो हमें अनिश्चित रूप देगा, और हमें एल 'होपिटल के नियम का उपयोग करने की अनुमति देगा)। इसके बजाय, ईक। अनन्तता में चले जाते। तो कोब्-डगलस फंक्शन में आने के लिए की जरूरत होती है।a+b1c0(2)(2)a+b=1

हमारी साइट का प्रयोग करके, आप स्वीकार करते हैं कि आपने हमारी Cookie Policy और निजता नीति को पढ़ और समझा लिया है।
Licensed under cc by-sa 3.0 with attribution required.