हास्केल, 204 271 बाइट्स
संपादित करें : उत्तल पतवार को एक सूची के रूप में अपडेट करके बहुत आगे बढ़ाया गया है (लेकिन असमान संस्करण के समान जटिलता के साथ), "स्प्लिटकूप x" के बजाय "स्प्लिट (x + 1)" का उपयोग करके, और Predule जैसी सभी योग्य कॉल को हटा दें। foldl।
यह एक फ़ंक्शन f बनाता है जो (a, b) जोड़े की सूची और x मानों की सूची की अपेक्षा करता है। मुझे लगता है कि यह एपीएल परिवार में समान विचारों का उपयोग करके किसी भी चीज से लंबाई-वार उड़ा दिया जाएगा, लेकिन यहां यह जाता है:
import Data.Map
r=fromListWith max
[]%v=[(0,v)]
i@((p,u):j)%v|p>v#u=j%v|0<1=(v#u,v):i
(a,b)#(c,d)=1+div(b-d)(c-a)
o i x=(\(a,b)->a*x+b)$snd$findMax$fst$split(x+1)$r$foldl'(%)[]$r$zip(fmap fst i)i
f=fmap.o
नमूना उपयोग:
[1 of 1] Compiling Main ( linear-min.hs, interpreted )
Ok, modules loaded: Main.
λ> f [(2,8), (4,0), (2,1), (1,10), (3,3), (0,4)] [1..5]
[11,12,14,16,20]
λ> f [(1,20), (2,12), (3,11), (4,8)] [1..5]
[21,22,23,24,28]
यह ओ (एन लॉग एन) समय में काम करता है; विश्लेषण के लिए नीचे देखें।
संपादित करें: यहाँ बड़े-ओ विश्लेषण और यह कैसे काम करता है, इसका वर्णन के साथ एक अन-गोल्ड संस्करण है:
import Prelude hiding (null, empty)
import Data.Map hiding (map, foldl)
-- Just for clarity:
type X = Int
type Y = Int
type Line = (Int,Int)
type Hull = Data.Map.Map X Line
slope (a,b) = a
{-- Take a list of pairs (a,b) representing lines a*x + b and sort by
ascending slope, dropping any lines which are parallel to but below
another line.
This composition is O(n log n); n for traversing the input and
the output, log n per item for dictionary inserts during construction.
The input and output are both lists of length <= n.
--}
sort :: [Line] -> [Line]
sort = toList . fromListWith max
{-- For lines ax+b, a'x+b' with a < a', find the first value of x
at which a'x + b' exceeds ax + b. --}
breakEven :: Line -> Line -> X
breakEven p@(a,b) q@(a',b') = if slope p < slope q
then 1 + ((b - b') `div` (a' - a))
else error "unexpected ordering"
{-- Update the convex hull with a line whose slope is greater
than any other lines in the hull. Drop line segments
from the hull until the new line intersects the final segment.
split is used to find the portion of the convex hull
to the right of some x value; it has complexity O(log n).
insert is also O(log n), so one invocation of this
function has an O(log n) cost.
updateHull is recursive, but see analysis for hull to
account for all updateHull calls during one execution.
--}
updateHull :: Line -> Hull -> Hull
updateHull line hull
| null hull = singleton 0 line
| slope line <= slope lastLine = error "Hull must be updated with lines of increasing slope"
| hull == hull' = insert x line hull
| otherwise = updateHull line hull''
where (lastBkpt, lastLine) = findMax hull
x = breakEven lastLine line
hull' = fst $ x `split` hull
hull'' = fst $ lastBkpt `split` hull
{-- Build the convex hull by adding lines one at a time,
ordered by increasing slope.
Each call to updateHull has an immediate cost of O(log n),
and either adds or removes a segment from the hull. No
segment is added more than once, so the total cost is
O(n log n).
--}
hull :: [Line] -> Hull
hull = foldl (flip updateHull) empty . sort
{-- Find the highest line for the given x value by looking up the nearest
(breakpoint, line) pair with breakpoint <= x. This uses the neat
function splitLookup which looks up a key k in a dictionary and returns
a triple of:
- The subdictionary with keys < k.
- Just v if (k -> v) is in the dictionary, or Nothing otherwise
- The subdictionary with keys > k.
O(log n) for dictionary lookup.
--}
valueOn :: Hull -> X -> Y
valueOn boundary x = a*x + b
where (a,b) = case splitLookup x boundary of
(_ , Just ab, _) -> ab
(lhs, _, _) -> snd $ findMax lhs
{-- Solve the problem!
O(n log n) since it maps an O(log n) function over a list of size O(n).
Computation of the function to map is also O(n log n) due to the use
of hull.
--}
solve :: [Line] -> [X] -> [Y]
solve lines = map (valueOn $ hull lines)
-- Test case from the original problem
test = [(2,8), (4,0), (2,1), (1,10), (3,3), (0,4)] :: [Line]
verify = solve test [1..5] == [11,12,14,16,20]
-- Test case from comment
test' = [(1,20),(2,12),(3,11),(4,8)] :: [Line]
verify' = solve test' [1..5] == [21,22,23,24,28]