हार्ड कोड गोल्फ: 7 से विभाज्यता के लिए रेगेक्स


75

मथायस गोएर्गेन्स में 25,604-वर्ण (मूल 63,993-वर्ण से नीचे) रेगेक्स है, जो 7 से विभाज्य संख्या से मेल खाता है, लेकिन इसमें बहुत अधिक फ़्लफ़ शामिल है: निरर्थक कोष्ठक, वितरण ( xx|xy|yx|yyइसके बजाय [xy]{2}और अन्य मुद्दों पर, हालांकि मुझे यकीन है कि मैं एक हूँ) ताजा शुरुआत अंतरिक्ष को बचाने में मददगार होगी। इसे कितना छोटा बनाया जा सकता है?

नियमित अभिव्यक्ति के किसी भी उचित विविधता की अनुमति है, लेकिन रेगेक्स में कोई निष्पादन योग्य कोड नहीं है।

नियमित अभिव्यक्ति को 7 और किसी अन्य द्वारा विभाज्य संख्या के दशमलव प्रतिनिधित्व वाले सभी तारों से मेल खाना चाहिए। रेगेक्स के लिए अतिरिक्त क्रेडिट जो शुरुआती 0s की अनुमति नहीं देता है।


सटीक इरादा क्या है? क्या इसे 7 से विभाज्य किसी भी आकार के सभी नंबरों से मिलान करना है, या, उदाहरण के लिए, केवल 32-बिट संकेत मान्य हैं?
पीटर टेलर

2
@Peter टेलर: यह उन सभी तारों से मेल खाना चाहिए जो 7 से विभाज्य संख्या का दशमलव प्रतिनिधित्व हैं। समाधान के लिए अतिरिक्त क्रेडिट जो कि 0s को अस्वीकार करता है।
चार्ल्स

1
किसी भी संयोग से ... रेगेक्स की संख्या 7 से अविभाज्य नहीं है ?
बूथबीज

@boothby: बिल्कुल, अन्यथा आप केवल खाली अभिव्यक्ति का उपयोग कर सकते हैं।
चार्ल्स

2
@ n @h 0a̷̭̿h̸̡̅ẗ̵̨́d̷̰̀ĥ̷̳ हां, 0 को किसी भी संस्करण में अनुमति दी जानी चाहिए।
चार्ल्स

जवाबों:


24

10791 वर्ण, अग्रणी शून्य अनुमति दी

(0|7|46*[29]|(1|8|46*3|(2|9|46*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(4|63*[18]|(1|8|63*5)(6|43*5)*(2|9|43*[18]))|(2|9|46*4)(3|56*4)*(1|8|56*[29])|(3|46*5|(1|8|46*3|(2|9|46*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4))|(2|9|46*4)(3|56*4)*(4|56*5)|(5|46*[07]|(1|8|46*3|(2|9|46*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))|(2|9|46*4)(3|56*4)*(6|56*[07]))(4|36*[07]|(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4))|(1|8|36*4)(3|56*4)*(4|56*5)))(1|8|(0|7|[29]6*4)(3|56*4)*(4|56*5)|[29]6*5|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))|(6|(0|7|[29]6*4)(3|56*4)*(2|9|56*3)|[29]6*3|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3)))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4)|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))))*(5|34*6|(0|7|34*[18]|(2|9|34*3)(6|[07]4*3)*(4|[07]4*[18]))(3|56*4|(6|56*[07])(4|36*[07])*(1|8|36*4))*(1|8|64*6|(5|64*3)(6|[07]4*3)*(2|9|[07]4*6))|(2|9|34*3)(6|[07]4*3)*(2|9|[07]4*6)|(6|(0|7|[29]6*4)(3|56*4)*(2|9|56*3)|[29]6*3|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3)))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(4|63*[18]|(1|8|63*5)(6|43*5)*(2|9|43*[18])|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(6|36*[29]|(1|8|36*4)(3|56*4)*(1|8|56*[29]))))|(5|46*[07]|(1|8|46*3|(2|9|46*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))|(2|9|46*4)(3|56*4)*(6|56*[07]))(4|36*[07]|(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))|(1|8|36*4)(3|56*4)*(6|56*[07]))*(6|36*[29]|(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(4|63*[18]|(1|8|63*5)(6|43*5)*(2|9|43*[18]))|(1|8|36*4)(3|56*4)*(1|8|56*[29]))|(6|46*[18]|(1|8|46*3|(2|9|46*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(3|63*[07]|(1|8|63*5)(6|43*5)*(1|8|43*[07]))|(2|9|46*4)(3|56*4)*(0|7|56*[18])|(3|46*5|(1|8|46*3|(2|9|46*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4))|(2|9|46*4)(3|56*4)*(4|56*5)|(5|46*[07]|(1|8|46*3|(2|9|46*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))|(2|9|46*4)(3|56*4)*(6|56*[07]))(4|36*[07]|(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4))|(1|8|36*4)(3|56*4)*(4|56*5)))(1|8|(0|7|[29]6*4)(3|56*4)*(4|56*5)|[29]6*5|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))|(6|(0|7|[29]6*4)(3|56*4)*(2|9|56*3)|[29]6*3|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3)))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4)|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))))*(4|34*5|(0|7|34*[18]|(2|9|34*3)(6|[07]4*3)*(4|[07]4*[18]))(3|56*4|(6|56*[07])(4|36*[07])*(1|8|36*4))*(0|7|64*5|(5|64*3)(6|[07]4*3)*(1|8|[07]4*5))|(2|9|34*3)(6|[07]4*3)*(1|8|[07]4*5)|(6|(0|7|[29]6*4)(3|56*4)*(2|9|56*3)|[29]6*3|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3)))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(3|63*[07]|(1|8|63*5)(6|43*5)*(1|8|43*[07])|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(5|36*[18]|(1|8|36*4)(3|56*4)*(0|7|56*[18]))))|(5|46*[07]|(1|8|46*3|(2|9|46*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))|(2|9|46*4)(3|56*4)*(6|56*[07]))(4|36*[07]|(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))|(1|8|36*4)(3|56*4)*(6|56*[07]))*(5|36*[18]|(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(3|63*[07]|(1|8|63*5)(6|43*5)*(1|8|43*[07]))|(1|8|36*4)(3|56*4)*(0|7|56*[18])))(2|9|53*[07]|(0|7|53*5)(6|43*5)*(1|8|43*[07])|(1|8|53*6|(0|7|53*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(5|36*[18]|(1|8|36*4)(3|56*4)*(0|7|56*[18]))|(4|[07]6*3|(1|8|53*6|(0|7|53*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(5|[07]6*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(3|63*[07]|(1|8|63*5)(6|43*5)*(1|8|43*[07])|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(5|36*[18]|(1|8|36*4)(3|56*4)*(0|7|56*[18])))|(6|53*4|(0|7|53*5)(6|43*5)*(5|43*4)|(1|8|53*6|(0|7|53*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))|(4|[07]6*3|(1|8|53*6|(0|7|53*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(5|[07]6*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4)|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))))(1|8|(0|7|[29]6*4)(3|56*4)*(4|56*5)|[29]6*5|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))|(6|(0|7|[29]6*4)(3|56*4)*(2|9|56*3)|[29]6*3|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3)))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4)|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))))*(4|34*5|(0|7|34*[18]|(2|9|34*3)(6|[07]4*3)*(4|[07]4*[18]))(3|56*4|(6|56*[07])(4|36*[07])*(1|8|36*4))*(0|7|64*5|(5|64*3)(6|[07]4*3)*(1|8|[07]4*5))|(2|9|34*3)(6|[07]4*3)*(1|8|[07]4*5)|(6|(0|7|[29]6*4)(3|56*4)*(2|9|56*3)|[29]6*3|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3)))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(3|63*[07]|(1|8|63*5)(6|43*5)*(1|8|43*[07])|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(5|36*[18]|(1|8|36*4)(3|56*4)*(0|7|56*[18])))))*(3|53*[18]|(0|7|53*5)(6|43*5)*(2|9|43*[18])|(1|8|53*6|(0|7|53*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(6|36*[29]|(1|8|36*4)(3|56*4)*(1|8|56*[29]))|(4|[07]6*3|(1|8|53*6|(0|7|53*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(5|[07]6*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(4|63*[18]|(1|8|63*5)(6|43*5)*(2|9|43*[18])|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(6|36*[29]|(1|8|36*4)(3|56*4)*(1|8|56*[29])))|(6|53*4|(0|7|53*5)(6|43*5)*(5|43*4)|(1|8|53*6|(0|7|53*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))|(4|[07]6*3|(1|8|53*6|(0|7|53*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(5|[07]6*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4)|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))))(1|8|(0|7|[29]6*4)(3|56*4)*(4|56*5)|[29]6*5|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))|(6|(0|7|[29]6*4)(3|56*4)*(2|9|56*3)|[29]6*3|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3)))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4)|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))))*(5|34*6|(0|7|34*[18]|(2|9|34*3)(6|[07]4*3)*(4|[07]4*[18]))(3|56*4|(6|56*[07])(4|36*[07])*(1|8|36*4))*(1|8|64*6|(5|64*3)(6|[07]4*3)*(2|9|[07]4*6))|(2|9|34*3)(6|[07]4*3)*(2|9|[07]4*6)|(6|(0|7|[29]6*4)(3|56*4)*(2|9|56*3)|[29]6*3|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3)))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(4|63*[18]|(1|8|63*5)(6|43*5)*(2|9|43*[18])|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(6|36*[29]|(1|8|36*4)(3|56*4)*(1|8|56*[29]))))))+

10795 वर्ण, अग्रणी शून्य निषिद्ध

0|((foo)0*)+, जहां ऊपर regex है (0|foo)+

व्याख्या

7 से विभाज्य संख्याओं को 7 राज्यों Q = {0,…, 6}, प्रारंभिक और अंतिम स्थिति 0 के साथ स्पष्ट परिमित ऑटोमेटन द्वारा मिलान किया जाता है, और संक्रमण d: i ↦ (10i + d) mod 7. मैंने इस परिमित ऑटोमेटन को बदल दिया है एक नियमित अभिव्यक्ति, अनुमत मध्यवर्ती राज्यों के सेट पर पुनरावृत्ति का उपयोग करना:

यह देखते हुए, j let Q और S, Q, let f (i, S, j) एक नियमित अभिव्यक्ति है जो कि I से j तक सभी ऑटोमेटन पथों से मेल खाता है। S. उसके बाद केवल मध्यवर्ती राज्यों का उपयोग करके।

f (i, (, j) = (j - 10i) mod 7,

f (i, S k {k}, j) = f (i, S, j) (f (i, S, k) f (k, S, k) * f (k, S, j)।

मैंने कश्मीर को चुनने के लिए डायनामिक प्रोग्रामिंग का उपयोग किया ताकि परिणामी अभिव्यक्ति की लंबाई कम हो सके।


मुझे लगता है कि आपको अग्रणी शून्य मामले में 2 चरित्र जोड़ना होगा, क्योंकि मुझे लगता है कि शून्य की अनुमति है0|((foo)0*)+
n̴̖̋h̸̡̅ẗ̵̨́à̷̰ĥ̷̳h 16ḓ̷̿

3
मैंने सवाल पर टिप्पणी की है, लेकिन सामान्य ज्ञान से, "कोई अग्रणी शून्य नहीं" का आमतौर पर मतलब है कि कोई अतिरेक 0 नहीं है, लेकिन यह संख्या शून्य को बाहर नहीं करता है।
n --h'a̷̭̿h̸̡̅ẗ̵̨́d̷̰̀ĥ̷̳

95

13,755 12,699 12,731 वर्ण

यह रेगेक्स अग्रणी शून्य को अस्वीकार नहीं करता है।

(0|7|[18]5*4|(2|9|[18]5*6)(3|[29]5*6)*(1|8|[29]5*4)|(3|[18]5*[07]|(2|9|[18]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(5|65*4|(0|7|65*6)(3|[29]5*6)*(1|8|[29]5*4))|(4|[18]5*[18]|(2|9|[18]5*6)(3|[29]5*6)*(5|[29]5*[18])|(3|[18]5*[07]|(2|9|[18]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(2|9|35*4|(4|35*6)(3|[29]5*6)*(1|8|[29]5*4)|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(5|65*4|(0|7|65*6)(3|[29]5*6)*(1|8|[29]5*4)))|(5|[18]5*[29]|(2|9|[18]5*6)(3|[29]5*6)*(6|[29]5*[29])|(3|[18]5*[07]|(2|9|[18]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))|(4|[18]5*[18]|(2|9|[18]5*6)(3|[29]5*6)*(5|[29]5*[18])|(3|[18]5*[07]|(2|9|[18]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(0|7|35*[29]|(4|35*6)(3|[29]5*6)*(6|[29]5*[29])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))))(4|[07]5*[29]|(1|8|[07]5*6)(3|[29]5*6)*(6|[29]5*[29])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))|(3|[07]5*[18]|(1|8|[07]5*6)(3|[29]5*6)*(5|[29]5*[18])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(0|7|35*[29]|(4|35*6)(3|[29]5*6)*(6|[29]5*[29])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))))*(6|[07]5*4|(1|8|[07]5*6)(3|[29]5*6)*(1|8|[29]5*4)|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(5|65*4|(0|7|65*6)(3|[29]5*6)*(1|8|[29]5*4))|(3|[07]5*[18]|(1|8|[07]5*6)(3|[29]5*6)*(5|[29]5*[18])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(2|9|35*4|(4|35*6)(3|[29]5*6)*(1|8|[29]5*4)|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(5|65*4|(0|7|65*6)(3|[29]5*6)*(1|8|[29]5*4))))|(6|[18]5*3|(2|9|[18]5*6)(3|[29]5*6)*(0|7|[29]5*3)|(3|[18]5*[07]|(2|9|[18]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(4|65*3|(0|7|65*6)(3|[29]5*6)*(0|7|[29]5*3))|(4|[18]5*[18]|(2|9|[18]5*6)(3|[29]5*6)*(5|[29]5*[18])|(3|[18]5*[07]|(2|9|[18]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(1|8|35*3|(4|35*6)(3|[29]5*6)*(0|7|[29]5*3)|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(4|65*3|(0|7|65*6)(3|[29]5*6)*(0|7|[29]5*3)))|(5|[18]5*[29]|(2|9|[18]5*6)(3|[29]5*6)*(6|[29]5*[29])|(3|[18]5*[07]|(2|9|[18]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))|(4|[18]5*[18]|(2|9|[18]5*6)(3|[29]5*6)*(5|[29]5*[18])|(3|[18]5*[07]|(2|9|[18]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(0|7|35*[29]|(4|35*6)(3|[29]5*6)*(6|[29]5*[29])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))))(4|[07]5*[29]|(1|8|[07]5*6)(3|[29]5*6)*(6|[29]5*[29])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))|(3|[07]5*[18]|(1|8|[07]5*6)(3|[29]5*6)*(5|[29]5*[18])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(0|7|35*[29]|(4|35*6)(3|[29]5*6)*(6|[29]5*[29])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))))*(5|[07]5*3|(1|8|[07]5*6)(3|[29]5*6)*(0|7|[29]5*3)|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(4|65*3|(0|7|65*6)(3|[29]5*6)*(0|7|[29]5*3))|(3|[07]5*[18]|(1|8|[07]5*6)(3|[29]5*6)*(5|[29]5*[18])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(1|8|35*3|(4|35*6)(3|[29]5*6)*(0|7|[29]5*3)|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(4|65*3|(0|7|65*6)(3|[29]5*6)*(0|7|[29]5*3)))))(2|9|45*3|(5|45*6)(3|[29]5*6)*(0|7|[29]5*3)|(6|45*[07]|(5|45*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(4|65*3|(0|7|65*6)(3|[29]5*6)*(0|7|[29]5*3))|(0|7|45*[18]|(5|45*6)(3|[29]5*6)*(5|[29]5*[18])|(6|45*[07]|(5|45*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(1|8|35*3|(4|35*6)(3|[29]5*6)*(0|7|[29]5*3)|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(4|65*3|(0|7|65*6)(3|[29]5*6)*(0|7|[29]5*3)))|(1|8|45*[29]|(5|45*6)(3|[29]5*6)*(6|[29]5*[29])|(6|45*[07]|(5|45*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))|(0|7|45*[18]|(5|45*6)(3|[29]5*6)*(5|[29]5*[18])|(6|45*[07]|(5|45*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(0|7|35*[29]|(4|35*6)(3|[29]5*6)*(6|[29]5*[29])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))))(4|[07]5*[29]|(1|8|[07]5*6)(3|[29]5*6)*(6|[29]5*[29])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))|(3|[07]5*[18]|(1|8|[07]5*6)(3|[29]5*6)*(5|[29]5*[18])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(0|7|35*[29]|(4|35*6)(3|[29]5*6)*(6|[29]5*[29])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))))*(5|[07]5*3|(1|8|[07]5*6)(3|[29]5*6)*(0|7|[29]5*3)|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(4|65*3|(0|7|65*6)(3|[29]5*6)*(0|7|[29]5*3))|(3|[07]5*[18]|(1|8|[07]5*6)(3|[29]5*6)*(5|[29]5*[18])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(1|8|35*3|(4|35*6)(3|[29]5*6)*(0|7|[29]5*3)|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(4|65*3|(0|7|65*6)(3|[29]5*6)*(0|7|[29]5*3)))))*(3|45*4|(5|45*6)(3|[29]5*6)*(1|8|[29]5*4)|(6|45*[07]|(5|45*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(5|65*4|(0|7|65*6)(3|[29]5*6)*(1|8|[29]5*4))|(0|7|45*[18]|(5|45*6)(3|[29]5*6)*(5|[29]5*[18])|(6|45*[07]|(5|45*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(2|9|35*4|(4|35*6)(3|[29]5*6)*(1|8|[29]5*4)|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(5|65*4|(0|7|65*6)(3|[29]5*6)*(1|8|[29]5*4)))|(1|8|45*[29]|(5|45*6)(3|[29]5*6)*(6|[29]5*[29])|(6|45*[07]|(5|45*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))|(0|7|45*[18]|(5|45*6)(3|[29]5*6)*(5|[29]5*[18])|(6|45*[07]|(5|45*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(0|7|35*[29]|(4|35*6)(3|[29]5*6)*(6|[29]5*[29])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))))(4|[07]5*[29]|(1|8|[07]5*6)(3|[29]5*6)*(6|[29]5*[29])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))|(3|[07]5*[18]|(1|8|[07]5*6)(3|[29]5*6)*(5|[29]5*[18])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(0|7|35*[29]|(4|35*6)(3|[29]5*6)*(6|[29]5*[29])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))))*(6|[07]5*4|(1|8|[07]5*6)(3|[29]5*6)*(1|8|[29]5*4)|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(5|65*4|(0|7|65*6)(3|[29]5*6)*(1|8|[29]5*4))|(3|[07]5*[18]|(1|8|[07]5*6)(3|[29]5*6)*(5|[29]5*[18])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(2|9|35*4|(4|35*6)(3|[29]5*6)*(1|8|[29]5*4)|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(5|65*4|(0|7|65*6)(3|[29]5*6)*(1|8|[29]5*4))))))*

यह द रेगेक्स कोच के साथ परीक्षण किया गया है ।

हम वहां कैसे पहुंचे

सबसे पहले एक डीएफए के निर्माण से ऊपर रेगेक्स जो हम चाहते हैं कि इनपुट को स्वीकार करेंगे (7 से विभाज्य दशमलव) और फिर एक नियमित अभिव्यक्ति में परिवर्तित करना और नोटा को ठीक करना

इसे समझने के लिए, यह पहले डीएफए बनाने में मदद करता है जो निम्नलिखित भाषा को स्वीकार करता है:

L = {w | w is a binary representation of an integer divisible by 7 }

यही है, यह बाइनरी संख्याओं से मेल खाएगा जो 7 से विभाज्य हैं।

DFA इस तरह दिखता है:

मॉड 7 एनएफए

यह काम किस प्रकार करता है

आप एक मौजूदा मूल्य रखते हैं Aजो बिट्स के मूल्य का प्रतिनिधित्व करता है जिसे डीएफए ने पढ़ा है। जब आप पढ़ते हैं 0तब A = 2*Aऔर जब आप पढ़ते हैं ए 1 A = 2*A + 1। आपके द्वारा गणना किए गए प्रत्येक चरण पर आप A mod 7उस स्थिति पर जाते हैं जो उत्तर का प्रतिनिधित्व करती है।

तो एक परीक्षण चलाने:

हम पढ़ रहे हैं 10101जिसमें दशमलव में 21 के लिए द्विआधारी प्रतिनिधित्व है।

  1. हम q0वर्तमान में राज्य में शुरू करते हैंA=0
  2. हम एक पढ़ा 1ऊपर 'नियम' से, A = 2*A + 1इसलिए A = 1A mod 7 = 1इसलिए हम राज्य में जाते हैंq1
  3. हम एक पढ़ा 0, A = 2*A = 2, A mod 7 = 2तो हम करने के लिए ले जाने केq2
  4. पढ़ें एक 1, A = 2*A + 1 = 5, A mod 7 = 5, को स्थानांतरितq5
  5. पढ़ें एक 0, A = 2*A = 10, A mod 7 = 3, को स्थानांतरितq3
  6. पढ़ें एक 1, A = 2*A + 1 = 21, A mod 7 = 0, को स्थानांतरितq0
  7. इनपुट स्वीकार किया जाता है इसलिए संख्या 101017 से विभाज्य है!

DFA को एक नियमित अभिव्यक्ति में बदलना एक मुश्किल काम है, इसलिए मुझे JFLAP मिला , जो मेरे लिए करना है, निम्नलिखित का उत्पादन करना:

(0|111|100((1|00)0)*011|(101|100((1|00)0)*(1|00)1)(1((1|00)0)*(1|00)1)*(01|1((1|00)0)*011)|(110|100((1|00)0)*010|(101|100((1|00)0)*(1|00)1)(1((1|00)0)*(1|00)1)*(00|1((1|00)0)*010))(1|0(1((1|00)0)*(1|00)1)*(00|1((1|00)0)*010))*0(1((1|00)0)*(1|00)1)*(01|1((1|00)0)*011))*

दशमलव संख्या के लिए

प्रक्रिया बहुत समान है:

मैंने एक DFA का निर्माण किया जो भाषा को स्वीकार करता है:

L = {w | w is a decimal number that is divisible by 7}

यहाँ DFA है:

तर्क समान है, सभी अतिरिक्त अंकों की दशमलव संख्याओं को लाने के लिए राज्यों की समान संख्या केवल कई और संक्रमण है।

अब बदलने के लिए शासन Aहर कदम पर है: जब आप एक दशमलव अंकों पढ़ा n: A = 10*A + n। फिर आप बस mod A7 से और अगले राज्य में जाएं।

संशोधन

संशोधन ५

उपरोक्त नियमित अभिव्यक्ति अब शून्य के अलावा संख्याओं को अस्वीकार करती है - पाठ्यक्रम के शून्य से ही।

यह DFA को थोड़ा अलग बनाता है, जब आप पहला शून्य पढ़ते हैं, तो मूल रूप से आप प्रारंभिक नोड से अलग हो जाते हैं। एक और शून्य पढ़ना आपको शाखित अवस्था पर एक अनंत लूप में डालता है। मैंने यह दिखाने के लिए आरेख को ठीक नहीं किया है।

संशोधन 7

कुछ "मेटेरेगेक्स" किया और चरित्र वर्गों के साथ कुछ यूनियनों को बदलकर मेरे रेगेक्स को छोटा कर दिया।

संशोधन 10 और 11 (nhhtdh द्वारा)

अग्रणी शून्य को अस्वीकार करने के लिए लेखक का संशोधन गलत है। यह बाइनरी रेगेक्स के मामले में रीजेक्स को मान्य संख्याओं जैसे 1110 (दशमलव = 14) से मेल करने में विफल रहता है, और दशमलव रेगेक्स के मामले में 70। ये संशोधन संशोधन को प्रभावित करता है, और परिणामस्वरूप, मनमाने ढंग से अग्रणी शून्य और खाली स्ट्रिंग को मिलान करने की अनुमति देता है।

यह संशोधन दशमलव regex के आकार को बढ़ाता है, क्योंकि यह मूल regex में एक बग को सही करता है, जो मूल DFA में राज्य 5 से राज्य 3 के लिए एक किनारे (9) के लापता होने के कारण होता है।


मैं दशमलव निर्दिष्ट करने के लिए प्रश्न को स्पष्ट करूँगा। हाँ, यह बहुत आसान है, जहां आधार 7 में है ख (ख -1)।
चार्ल्स

मैंने अपने उत्तर में संशोधन कर दिया है। दशमलव सभी अच्छा है: डी
ग्रिफिन

मुझे अपनी टिप्पणी में संशोधन करने में बहुत देर हो गई, हालांकि ... मेरा मतलब 7 | B (B-1) जहां B, B की एक छोटी शक्ति है। 7 के बाद से बाइनरी में छोटी रेगेक्स है 8 (8-1)। दशमलव 7 से बड़ा है | 999999000000 सबसे छोटा है जो काम करता है।
चार्ल्स

3
Btw मुझे लगता है कि आपने
बाइनरीकोड

2
इस उत्तर में दिखाए गए रीगेक्स में से कोई भी सही नहीं है। बाइनरी एक मेल नहीं खाता है 1110, और दशमलव के लिए एक मेल नहीं खाता है 70। यह अजगर और पर्ल दोनों में परीक्षण किया गया था। (अजगर (को हर एक को (?:पहले परिवर्तित करने की आवश्यकता थी )
डैनियल मार्टिन

35

.NET रेगेक्स, 119 118 105 बाइट्स

^(?>(?=[1468](?<4>)|)(?=[2569](?<4>){2}|)([3-6]()|\d)((?<-2>)(){3}|){7}((?<-4>){7}|(?<2-4>)|){9})+$(?!\2)

111 अक्षर प्रारंभिक 0s को अस्वीकार कर रहे हैं:

^(?!0.)(?>(?=[1468](?<4>)|)(?=[2569](?<4>){2}|)([3-6]()|\d)((?<-2>)(){3}|){7}((?<-4>){7}|(?<2-4>)|){9})+$(?!\2)

113 अक्षर प्रारंभिक 0s को रोकना और नकारात्मक संख्याओं का समर्थन करना:

^-?(?>(?=[1468](?<4>)|)(?=[2569](?<4>){2}|)([3-6]()|\d)((?<-2>)(){3}|){7}((?<-4>){7}|(?<2-4>)|){9})+$(?!\2)

इसे यहाँ आज़माएँ।

स्पष्टीकरण (पिछले संस्करण का)

यह इस प्रश्न में विभिन्न उत्तरों द्वारा उपयोग की जाने वाली तकनीकों का उपयोग करता है: पुलिस और लुटेरे: रिवर्स रेगेक्स गोल्फ । .NET regex में बैलेंसिंग ग्रुप नामक एक सुविधा है, जिसका उपयोग अंकगणित करने के लिए किया जा सकता है। (?<a>)एक समूह को धक्का देता है a(?<-a>)यदि कोई समूह aपहले से मेल नहीं खाता है तो वह पॉप और मेल नहीं खाता है ।

  • (?>...)मिलान करें और बाद में पीछे न हटें। इसलिए यह हमेशा केवल पहले मिलान वाले विकल्प से मेल खाएगा।
  • ((?<-t>)(){3}|){6} समूह t की संख्या को 3 से गुणा करें। परिणाम को समूह 2 की संख्या में सहेजें।
  • (?=[1468](?<2>)|)(?=[2569](?<2>){2}|)([3-6](?<2>){3}|\d) एक संख्या से मिलान करें, और समूह 2 की संख्या।
  • ((?<-2>){7}|){3} समूह 2 को 7 बार से निकालें।
  • ((?<t-2>)|){6} समूह 2 निकालें और समूह t की समान संख्या से मिलान करें।
  • $(?(t)a)अगर वहाँ अभी भी एक समूह टी मिलान है, aस्ट्रिंग के अंत के बाद मैच , जो असंभव है।

मुझे लगा कि इस 103 बाइट संस्करण को भी काम करना चाहिए, लेकिन कंपाइलर में बग का वर्कअराउंड नहीं मिला।

^(?(?(?((?<3>){2}[2569]|)([3-6])?((?<-1>)(){3}|){7})(?<3>[1468])?((?<-3>){7}|(?<1-3>)|){9})\d)+$(?(1)a)

बहुत छोटा। मैं यह कैसे काम करता है की एक व्याख्या प्यार करता हूँ!
चार्ल्स

@Charles संपादित किया गया।
jimmy23013

मुझे नहीं लगता कि यह होने वाला है, लेकिन मैं कम से कम DFA को पुनरावृत्ति के साथ लागू करना पसंद करता हूं, यह सिर्फ पागल है। मुझे आश्चर्य है कि यदि कोई व्यक्ति ट्यूरिंग को पूरा करने के रूप में .NET रीपेक्स को साबित या अस्वीकृत कर सकता है।
thePlasmaRailgun

@ ThePlasmaRailgun .NET regex पूर्ण रूप से ट्यूरिंग नहीं है, क्योंकि यह कम बाउंड ( उदाहरण ) से अधिक खाली कैप्चर को दोहराने की अनुमति नहीं देता है । यदि क्वांटिफायर वाले प्रत्येक समूह के पास सीमित संख्या में विकल्प हो सकते हैं यदि इनपुट की निश्चित लंबाई है।
jimmy23013

आह। उस सीमा के बिना, क्या यह ट्यूरिंग पूर्ण होगा?
thePlasmaRailgun

30

468 वर्ण

रूबी के रेगेक्स स्वाद पुनरावृत्ति (हालांकि यह धोखा देने की तरह है) की अनुमति देता है, इसलिए यह एक डीएफए को लागू करने के लिए सीधा है जो 7 का उपयोग करके विभाज्य संख्या को पहचानता है। प्रत्येक नामित समूह एक राज्य से मेल खाता है, और विकल्प में प्रत्येक शाखा एक अंक खाती है और फिर उपयुक्त स्थिति में कूद जाती है। यदि संख्या का अंत तक पहुँच जाता है, तो रेगेक्स केवल तभी मेल खाता है यदि इंजन "ए" समूह में है, अन्यथा यह विफल हो जाता है।

यह अग्रणी शून्य को पहचानता है।

(?!$)(?>(|(?<B>4\g<A>|5\g<B>|6\g<C>|[07]\g<D>|[18]\g<E>|[29]\g<F>|3\g<G>))(|(?<C>[18]\g<A>|[29]\g<B>|3\g<C>|4\g<D>|5\g<E>|6\g<F>|[07]\g<G>))(|(?<D>5\g<A>|6\g<B>|[07]\g<C>|[18]\g<D>|[29]\g<E>|3\g<F>|4\g<G>))(|(?<E>[29]\g<A>|3\g<B>|4\g<C>|5\g<D>|6\g<E>|[07]\g<F>|[18]\g<G>))(|(?<F>6\g<A>|[07]\g<B>|[18]\g<C>|[29]\g<D>|3\g<E>|4\g<F>|5\g<G>))(|(?<G>3\g<A>|4\g<B>|5\g<C>|6\g<D>|[07]\g<E>|[18]\g<F>|[29]\g<G>)))(?<A>$|[07]\g<A>|[18]\g<B>|[29]\g<C>|3\g<D>|4\g<E>|5\g<F>|6\g<G>)

3
मेरा इरादा था कि मैं उसे मना कर दूं, लेकिन मुझे लगता है कि मैंने ऐसा नहीं किया। यह रूबी, पर्ल, पीसीआरई और .NET भाषाओं में बहुत कम समाधानों के लिए अनुमति देता है।
चार्ल्स

2
पुनरावृत्ति इसे एक संदर्भ-मुक्त व्याकरण बनाता है (यदि यह तय कर सकता है {a*b*|a and b an equal amount of times})
शाफ़्ट सनकी

@ratchet freak: मुझे पता है कि यह तकनीकी रूप से एक नियमित अभिव्यक्ति नहीं है, लेकिन सवाल बताता है कि किसी भी regex स्वाद स्वीकार्य है।
लोजैकर

मैंने आपकी पोस्ट के आधार पर एक जनरेटर बनाया है जो इन्हें मनमाने विभाजकों और ठिकानों के लिए बनाता है: github.com/ThePlasmaRailgun/DivisibilityRegexes । इसमें JFLAP के लिए .jff फ़ाइलों को जनरेट करने का विकल्प भी है।
thePlasmaRailgun

24

मैं वास्तव में ग्रिफिन के जवाब से प्रभावित था और यह पता लगाने की आवश्यकता थी कि यह कैसे काम करता है! परिणाम निम्नलिखित जावास्क्रिप्ट है। (यह 3.5k वर्ण है, जो एक तरह से छोटा है!) genफ़ंक्शन एक भाजक और आधार लेता है और एक नियमित अभिव्यक्ति उत्पन्न करता है जो निर्दिष्ट आधार में संख्याओं से मेल खाता है जो उस भाजक द्वारा विभाज्य हैं।

मैंने किसी भी आधार के लिए ग्रिफिन के एनएफए को सामान्यीकृत किया है: nfaफ़ंक्शन एक भाजक और आधार लेता है और संक्रमण के दो आयामी सरणी देता है। उदाहरण के लिए, राज्य 0 से राज्य 2 पर जाने के लिए आवश्यक इनपुट है states[0][2] == "1"

reduceसमारोह में लेता है statesसरणी और के माध्यम से इसे चलाता इस एल्गोरिथ्म regex को NFA अनुवाद करने के लिए। उत्पन्न होने वाले अवशेष बहुत बड़े हैं और ऐसा लगता है कि अनुकूलन पर मेरे प्रयासों के बावजूद उनके पास बहुत अधिक अनावश्यक खंड हैं। 7 बेस 10 के लिए रेगेक्स लगभग ~ 67k वर्ण लंबा है; फ़ायरफ़ॉक्स "> आंतरिकError" n> 5 के लिए regex पार्स करने की कोशिश कर रहा है; Chrome पर regex को चलाना n> 6 के लिए धीमा होने लगता है।

एक testफ़ंक्शन भी है जो रेगेक्स और बेस लेता है और इसे 0 से 100 की संख्या के विरुद्ध चलाता है, इसलिए test(gen(5)) == [0, 5, 10, 15, ...]

उप-अपनाने के परिणाम के बावजूद, यह एक शानदार सीखने का अवसर था, और मुझे उम्मीद है कि भविष्य में इस कोड में से कुछ उपयोगी होंगे!

function gen(b, base) {
    var states = nfa(b, base)
    for (var i = 0; i < states.length; i++)
        states = reduce(states, i);
    return states[0][0] != 'phi' && new RegExp('^' + wrap(states[0][0]) + '$');
}

function test(reg, base) {
    if (!base)
        base = 10;

    var x = [];
    for (var i = 0; i < 100; i++)
        x.push(i);
    return x.map(function (a) {return a.toString(base)}).filter(reg.test.bind(reg)).map(function (a) {return parseInt(a, base)})
}

function nfa(b, base) {
    if (!base)
        base = 10;

    var states = [];
    for (var i = 0; i < b; i++) {
        states[i] = [];
        for (var j = 0; j < b; j++)
            states[i][j] = [];
    }

    for (var i = 0; i < b; i++)
        for (var n = 0; n < base; n++)
            states[i][(i * base + n) % b].push(n.toString());

    for (var i = 0; i < b; i++)
        for (var j = 0; j < b; j++)
            states[i][j] = states[i][j].length > 1 ? '[' + states[i][j].join('') + ']' : (states[i][j][0] || 'phi');
    return states;
}

// http://www.cs.umbc.edu/~squire/cs451_l7.html
function reduce(states, n) {
    var s = states.length;
    var reduced = [];
    for (var i = 0; i < s; i++) {
        reduced[i] = [];
        for (var j = 0; j < s; j++) {
            // reduced[i][j] = wrap(states[i][n] + wrap(states[n][n]) + '*' + states[n][j] + '|' + states[i][j]);
            reduced[i][j] = '';

            if (states[i][n] == 'phi' || states[n][j] == 'phi') {
                reduced[i][j] = states[i][j];
                continue;
            }

            if (states[i][n] != states[n][n])
                reduced[i][j] += wrap(states[i][n]);

            if (states[n][n] != 'phi') {
                reduced[i][j] += wrap(states[n][n]);

                if (states[i][n] == states[n][n] && states[n][j] == states[n][n])
                    reduced[i][j] += wrap(states[n][n]);

                if (states[i][n] == states[n][n] || states[n][j] == states[n][n])
                    reduced[i][j] += '+';
                else
                    reduced[i][j] += '*';
            }

            if (states[n][j] != states[n][n])
                reduced[i][j] += wrap(states[n][j]);

            reduced[i][j] = states[i][j] == 'phi' ? wrap(reduced[i][j]) : alternate(reduced[i][j], states[i][j]);
        }
    }
    return reduced;
}

function matching(x, open, close) {
    // Test if the parens are actually matching
    if ('(['.indexOf(x.charAt(open)) != -1 && ')]'.indexOf(x.charAt(close)) != -1) {
        var count = 0;
        for (var i = open; i <= close; i++) {
            if ('(['.indexOf(x.charAt(i)) != -1)
                count++;
            else if (')]'.indexOf(x.charAt(i)) != -1) {
                count--;

                if (count == 0)
                    return i == close;
            }
        }
    }

    return false;
}

function wrap(x) {
    if (x.length < 2 || matching(x, 0, x.length - 1))
        return x;
    return '(' + x + ')';
}

function optional(cond) {
    if (matching(cond, 0, cond.length - 2)) {
        var op = cond.charAt(cond.length - 1);
        if (op == '+')
            return cond.slice(0, -1) + '*';
        else if (op == '*' || op == '?')
            return cond;
    } else if (matching(cond, 0, cond.length - 1))
        return optional(cond.slice(1, -1));

    return wrap(cond) + '?';
}

function alternate(cond1, cond2) {
    cond2 = wrap(cond2);
    var index = cond1.indexOf(cond2);
    var len = cond2.length;
    var cond = '';

    if (index == 0) {
        var op = cond1.charAt(len);
        if (op == '*')
            cond = cond2 + '+' + optional(cond1.slice(len));
        else if (op == '+')
            cond = cond1;
        else 
            cond = cond2 + optional(cond1.slice(len));
    } else if (index == cond1.length - len)
        cond = optional(cond1.slice(0, index)) + cond2;
    else if (cond1.length == 1 && cond2.length == 1)
        cond = '[' + cond1 + cond2 + ']';
    else
        cond = cond1 + '|' + cond2;

    return wrap(cond);
}

7

पर्ल / पीसीआरई, 370 वर्ण

^(?!$|0.)([07]*(?:[18](?2)|[29](?3)|3(?4)|4(?5)|5(?7)|6(?9)|$))|(5*(?:[07](?4)|[18](?5)|[29](?7)|4(?1)|6(?3)|3(?9)))(3*(?:[18](?1)|[29](?2)|[07](?9)|4(?4)|5(?5)|6(?7)))([18]*(?:[07](?3)|[29](?5)|5(?1)|6(?2)|3(?7)|4(?9)))(6*([29](?1)|[07](?7)|[18](?9)|3(?2)|4(?3)|5(?4)))(4*([07](?2)|[18](?3)|[29](?4)|6(?1)|3(?5)|5(?9)))([29]*([07](?5)|[18](?7)|3(?1)|4(?2)|5(?3)|6(?4)))

खाली स्ट्रिंग को अस्वीकार कर देता है, साथ ही प्रमुख 0 ("0" को छोड़कर) के साथ तार।


@Charles यह वैध पीएचपी PCRE है, और वास्तव में विभाज्यता मान्य करने के लिए काम करता है - यह कोशिश यहाँ
बिल्ली
हमारी साइट का प्रयोग करके, आप स्वीकार करते हैं कि आपने हमारी Cookie Policy और निजता नीति को पढ़ और समझा लिया है।
Licensed under cc by-sa 3.0 with attribution required.