एक विभाजन को ब्लॉक करें


11

प्रेरणा

lसंख्याओं से मिलकर एक सूची पर विचार करें । सूचकांक में एक ब्लॉक आपरेशन को परिभाषित करें iसूची पर lलगातार 3 से शुरू तत्वों चलती का कार्य होने के लिए iमें lसमाप्त करने के लिए।

उदाहरण:

l, i (1-indexing) -> l (after applying block operation at index i)
[1,2,3,4,5], 1 -> [4,5,1,2,3]
[1,2,3,4,5,6,7], 3 -> [1,2,6,7,3,4,5]

केवल 0 और 1 से मिलकर एक सूची को देखते हुए, आपकी चुनौती इसे विभाजित करना है ताकि शून्य सामने हों, और केवल ब्लॉक ऑपरेशन का उपयोग करके, सबसे पीछे हों। आउटपुट को उस सूचकांक में होना चाहिए जिस क्रम में उन्हें सूची में लागू किया गया है।

क्योंकि यह सूची के लिए असंभव है [1,0,1,0], सूची की लंबाई कम से कम 5 होने की गारंटी है।

परीक्षण के मामले (1-अनुक्रमण)

(अन्य मान्य आउटपुट हैं)

[1,1,1,0,0] -> [1]
[0,1,0,1,0] -> [1,2,1,1]
[0,0,0,1,1,1,0,0,0] -> [4]

अधिक परीक्षण मामलों को उत्पन्न करने के लिए इस स्क्रिप्ट का उपयोग करें । (केवल इनपुट। rplc ' ';','हिस्से के लिए प्रयोग किया जाता है आरpl एक सी ई रिक्त स्थान उत्पादन में अल्पविराम के साथ)

मानदंड जीतना

मुख्य जीत मानदंड है, और टाई ब्रेकर है। विशेष रूप से:

  • परीक्षण मामले ( n_elem= 500, random_seed= {गुप्त मूल्य}) जीत के साथ सबसे कम आउटपुट लंबाई (ब्लॉक संचालन की कम से कम संख्या) का समाधान जीतता है। आपको परीक्षण मामले ( n_elem= 500, random_seed= 123456) के साथ अपना समाधान पूरा करने में सक्षम होना चाहिए ।
  • संबंधों के मामले में, वह समाधान जो 10 सेकंड में (मेरे लिए) जीतता है , उसके n_elemसाथ random_seed= {गुप्त मूल्य} का सबसे बड़ा पावर ऑफ़ -2 मान संभाल सकता है ।
  • संबंधों के मामले में, उस परीक्षण के मामले में कम समय लगने वाला समाधान जीत जाता है।

सैंडबॉक्स पोस्ट । (नोट) मेरे पास एक रैखिक-समय रैखिक-स्थान समाधान है, लेकिन इसके पास विशाल स्थिर कारक है, इसके अलावा इसे लागू करना आसान नहीं है। निरंतर कारक को कम करना संभव है, लेकिन फिर इसे लागू करना और भी कठिन है।
user202729

(अस्वीकरण: मैंने लिंक की गई चुनौती को हल कर दिया है)
user202729

बस स्पष्ट करने के लिए, आउटपुट को सबसे कम संभव आउटपुट होने की आवश्यकता नहीं है?
जुंगहवान मिन

@ जुंगह्वानिन सही।
user202729

जवाबों:


8

पायथन 3 , (0.397 n + 3.58) चरण

1000-बिंदु बहुपद प्रतिगमन द्वारा numpy.polyfit


  • संस्करण 1: 0.0546 n steps + 2.80 n - 221 के लिए चरणों की संख्या
  • संस्करण 2 के लिए चरणों की संख्या: 0.0235 n steps + 0.965 n - 74
  • संस्करण 3 के लिए चरणों की संख्या: 0.00965 n steps + 2.35 n - 111
  • संस्करण 4: 1.08 एन - 36.3 के लिए चरणों की संख्या
  • संस्करण 5: 0.397 n + 3.58 के लिए चरणों की संख्या

  • संस्करण 1: 14468 के लिए गुप्त परीक्षण मामला स्कोर
  • संस्करण 2: 5349 के लिए गुप्त परीक्षण मामला स्कोर
  • संस्करण 3 के लिए गुप्त परीक्षण केस स्कोर: 4143
  • संस्करण 4 के लिए सीक्रेट टेस्ट केस स्कोर: 450
  • संस्करण 5 के लिए सीक्रेट टेस्ट केस स्कोर: 205

def partite(L):
	endgame5 = [9,9,1,9,0,0,1,9,
		0,1,0,1,0,1,1,9,
		0,0,1,0,0,0,1,0,
		0,0,0,1,0,0,0,9]
	endgame6 = [9,9,2,9,1,1,2,9,0,2,0,0,1,2,2,9,
		0,1,2,1,0,1,2,1,0,1,0,2,1,1,0,9,
		0,0,1,0,1,0,1,1,0,0,0,0,1,1,1,1,
		0,0,2,2,0,0,2,2,0,0,0,0,0,0,0,9]
	endgame = [9,9,3,9,2,2,3,9,1,0,3,0,2,0,3,9,0,1,3,3,2,2,3,0,1,0,1,0,2,1,0,9,
		0,0,2,1,0,0,2,2,1,0,1,2,0,0,0,2,0,1,3,3,3,3,3,0,1,1,1,1,1,3,0,9,
		0,0,0,0,1,0,1,1,1,0,3,0,1,0,1,0,0,1,0,0,1,1,0,0,1,0,0,0,2,0,1,0,
		0,0,2,0,0,0,2,0,0,0,2,0,0,0,2,0,0,0,3,0,3,0,3,0,3,0,2,3,3,0,0,9]
	offset = 1
	steps = []
	def update(L,steps,ind):
		steps.append(offset + ind)
		if 0 <= ind and ind+3 < len(L):
			return (steps,L[:ind]+L[ind+3:]+L[ind:ind+3])
		else:
			print(offset,ind,L)
			raise
	if len(L) == 5:
		while endgame5[L[0]*16+L[1]*8+L[2]*4+L[3]*2+L[4]] != 9:
			steps, L = update(L,steps,endgame5[L[0]*16+L[1]*8+L[2]*4+L[3]*2+L[4]])
		return steps
	if len(L) == 6:
		while endgame6[L[0]*32+L[1]*16+L[2]*8+L[3]*4+L[4]*2+L[5]] != 9:
			steps, L = update(L,steps,endgame6[L[0]*32+L[1]*16+L[2]*8+L[3]*4+L[4]*2+L[5]])
		return steps
	if 1 not in L:
		return []
	while len(L) > 7 and 0 in L:
		wf_check = len(L)
		while L[0] != 0:
			pos = [-1]
			wf_check2 = -1
			while True:
				i = pos[-1]+1
				while i < len(L):
					if L[i] == 0:
						pos.append(i)
						i += 1
					else:
						i += 3
				assert len(pos) > wf_check2
				wf_check2 = len(pos)
				space = (pos[-1]-len(L)+1)%3
				ind = -1
				tail = pos.pop()
				i = len(L)-1
				while i >= 0:
					if tail == i:
						while tail == i:
							i -= 1
							tail = pos.pop() if pos else -1
						i -= 2
					elif i < len(L)-3 and L[i+space] == 0:
						ind = i
						break
					else:
						i -= 1
				if ind == -1:
					break
				steps, L = update(L, steps, ind)
				pos = pos or [-1]
			if L[0] == 0:
				break
			pos = [-1]
			while L[0] != 0:
				pos = [-1]
				found = False
				for i in range(1,len(L)):
					if L[i] == 0:
						if i%3 == (pos[-1]+1)%3:
							pos.append(i)
						else:
							found = found or i
				if found > len(L)-4:
					found = False
				if not found:
					break
				triple = []
				for i in range(1,len(L)-1):
					if L[i-1] == 1 and L[i] == 1 and L[i+1] == 1:
						triple.append(i)
					if len(triple) > 3:
						break
				space = (pos[-1]-len(L)+1)%3
				if space == 0:
					if found >= 2 and found-2 not in pos and found-1 not in pos:
						# ... _ 1 _ [0] 0 ...
						if found-2 in triple:
							triple.remove(found-2)
						if found-3 in triple:
							triple.remove(found-3)
						if L[-1] == 1:
							steps, L = update(L, steps, found-2)
							steps, L = update(L, steps, len(L)-4)
							steps, L = update(L, steps, len(L)-4)
						elif triple:
							steps, L = update(L, steps, found-2)
							if found < triple[0]:
								triple[0] -= 3
							steps, L = update(L, steps, triple[0]-1)
							steps, L = update(L, steps, len(L)-4)
						else:
							break
						assert L[-3] == 0
					elif found >= 1 and found-1 not in pos and found+1 not in pos:
						# ... _ 1 [0] _ 0 ...
						if found-2 in triple:
							triple.remove(found-2)
						if L[-2] == 1 and L[-1] == 1:
							steps, L = update(L, steps, found-1)
							steps, L = update(L, steps, len(L)-5)
							steps, L = update(L, steps, len(L)-5)
						elif triple:
							steps, L = update(L, steps, found-1)
							if found < triple[0]:
								triple[0] -= 3
							steps, L = update(L, steps, triple[0]-1)
							steps, L = update(L, steps, len(L)-5)
						elif L[-1] == 1:
							steps, L = update(L, steps, found-1)
							steps, L = update(L, steps, len(L)-4)
							steps, L = update(L, steps, len(L)-4)
							steps, L = update(L, steps, len(L)-4)
						else:
							break
						assert L[-3] == 0
					else:
						break
				elif space == 1:
					# ... 1 1 [0] 0 ...
					if found >= 2 and found-2 not in pos and found-1 not in pos:
						if found-2 in triple:
							triple.remove(found-2)
						if found-3 in triple:
							triple.remove(found-3)
						if triple:
							steps, L = update(L, steps, found-2)
							if found < triple[0]:
								triple[0] -= 3
							steps, L = update(L, steps, triple[0]-1)
							steps, L = update(L, steps, len(L)-5)
						elif L[-2] == 1 and L[-1] == 1:
							steps, L = update(L, steps, found-2)
							steps, L = update(L, steps, len(L)-4)
							steps, L = update(L, steps, len(L)-5)
						else:
							break
						assert L[-2] == 0
					else:
						break
				else:
					if found+1 not in pos and found+2 not in pos:
						# ... 0 [0] _ 1 _ ...
						if found+2 in triple:
							triple.remove(found+2)
						if found+3 in triple:
							triple.remove(found+3)
						if L[-2] == 1 and L[-1] == 1:
							steps, L = update(L, steps, found)
							steps, L = update(L, steps, len(L)-5)
						elif L[-1] == 1:
							steps, L = update(L, steps, found)
							steps, L = update(L, steps, len(L)-4)
							steps, L = update(L, steps, len(L)-4)
						elif triple:
							steps, L = update(L, steps, triple[0]-1)
							if triple[0] < found:
								found -= 3
							steps, L = update(L, steps, found)
							steps, L = update(L, steps, len(L)-5)
						else:
							break
						assert L[-1] == 0
					elif found >= 1 and found-1 not in pos and found+1 not in pos:
						# ... 0 _ [0] 1 _ ...
						if found+2 in triple:
							triple.remove(found+2)
						if L[-1] == 1:
							steps, L = update(L, steps, found-1)
							steps, L = update(L, steps, len(L)-4)
						elif triple:
							steps, L = update(L, steps, triple[0]-1)
							if triple[0] < found:
								found -= 3
							steps, L = update(L, steps, found-1)
							steps, L = update(L, steps, len(L)-4)
						else:
							break
						assert L[-1] == 0
					else:
						break
			if L[0] == 0:
				break
			if 0 in L[::3]:
				assert L[::3].index(0) < wf_check
				wf_check = L[::3].index(0)
			steps, L = update(L, steps, 0)
		assert L[0] == 0
		offset += L.index(1)
		del L[:L.index(1)]
		continue
	if 0 in L:
		offset -= 7-len(L)
		L = [0]*(7-len(L))+L
		assert(len(L) == 7)
		while endgame[L[0]*64+L[1]*32+L[2]*16+L[3]*8+L[4]*4+L[5]*2+L[6]] != 9:
			steps, L = update(L,steps,endgame[L[0]*64+L[1]*32+L[2]*16+L[3]*8+L[4]*4+L[5]*2+L[6]])
	return steps

इसे ऑनलाइन आज़माएं!


3

पायथन 3, n = 500 के लिए ~ 179 कदम (औसतन)

एक विधर्मी लालची दृष्टिकोण। किंडा धीमा लेकिन फिर भी काम करता है। छोटे आकारों के लिए एक इष्टतम सॉल्वर का उपयोग करता है।

def incomplete_groups(l):
    r = 0
    ones = 0
    for x in l:
        if x == "1":
            ones += 1
        else:
            if ones % 3:
                r += 1
            ones = 0
    # Ones at the end don't count as an incomplete group.

    return r

def move(l, i):
    return l[:i] + l[i+3:] + l[i:i+3]

def best_pos(l, hist):
    r = []
    cleanup = incomplete_groups(l) == 0

    candidates = []
    for i in range(len(l) - 3):
        block = l[i:i+3]
        if block == "111" and cleanup:
            return i
        elif block == "111":
            continue

        new = move(l, i)
        bad_start = i < 3 and "10" in l[:3]
        candidates.append((new not in hist, -incomplete_groups(new), bad_start, block != "000", i))

    candidates.sort(reverse=True)
    return candidates[0][-1]

def done(l):
    return list(l) == sorted(l)



class IDAStar:
    def __init__(self, h, neighbours):
        """ Iterative-deepening A* search.

        h(n) is the heuristic that gives the cost between node n and the goal node. It must be admissable, meaning that h(n) MUST NEVER OVERSTIMATE the true cost. Underestimating is fine.

        neighbours(n) is an iterable giving a pair (cost, node, descr) for each node neighbouring n
        IN ASCENDING ORDER OF COST. descr is not used in the computation but can be used to
        efficiently store information about the path edges (e.g. up/left/right/down for grids).
        """

        self.h = h
        self.neighbours = neighbours
        self.FOUND = object()


    def solve(self, root, is_goal, max_cost=None):
        """ Returns the shortest path between the root and a given goal, as well as the total cost.
        If the cost exceeds a given max_cost, the function returns None. If you do not give a
        maximum cost the solver will never return for unsolvable instances."""

        self.is_goal = is_goal
        self.path = [root]
        self.is_in_path = {root}
        self.path_descrs = []
        self.nodes_evaluated = 0

        bound = self.h(root)

        while True:
            t = self._search(0, bound)
            if t is self.FOUND: return self.path, self.path_descrs, bound, self.nodes_evaluated
            if t is None: return None
            bound = t

    def _search(self, g, bound):
        self.nodes_evaluated += 1

        node = self.path[-1]
        f = g + self.h(node)
        if f > bound: return f
        if self.is_goal(node): return self.FOUND

        m = None # Lower bound on cost.
        for cost, n, descr in self.neighbours(node):
            if n in self.is_in_path: continue

            self.path.append(n)
            self.is_in_path.add(n)
            self.path_descrs.append(descr)
            t = self._search(g + cost, bound)

            if t == self.FOUND: return self.FOUND
            if m is None or (t is not None and t < m): m = t

            self.path.pop()
            self.path_descrs.pop()
            self.is_in_path.remove(n)

        return m

def h(l):
    """Number of groups of 1 with length <= 3 that come before a zero."""
    h = 0
    num_ones = 0
    complete_groups = 0
    incomplete_groups = 0
    for x in l:
        if x == "1":
            num_ones += 1
        else:
            while num_ones > 3:
                num_ones -= 3
                h += 1
                complete_groups += 1
            if num_ones > 0:
                h += 1
                incomplete_groups += 1
            num_ones = 0

    return complete_groups + incomplete_groups

def neighbours(l):
    inc_groups = incomplete_groups(l)
    final = inc_groups == 0

    candidates = []
    for i in range(len(l) - 3):
        left = l[:i]
        block = l[i:i+3]
        right = l[i+3:]
        cand = (1, left + right + block, i)

        # Optimal choice.
        if final and (block != "111" or i >= len(l.rstrip("1"))):
            continue

        candidates.append(cand)

    candidates.sort(key=lambda c: c[2], reverse=True)

    return candidates


def is_goal(l):
    return all(l[i] <= l[i+1] for i in range(len(l)-1))

opt_solver = IDAStar(h, neighbours)

def partite(l):
    if isinstance(l, list):
        l = "".join(map(str, l))
    if len(l) < 10:
        return [i + 1 for i in opt_solver.solve(l, is_goal)[1]]
    moves = []
    hist = [l]
    while not done(l):
        i = best_pos(l, hist)
        l = move(l, i)
        moves.append(i+1)
        hist.append(l)
    return moves
हमारी साइट का प्रयोग करके, आप स्वीकार करते हैं कि आपने हमारी Cookie Policy और निजता नीति को पढ़ और समझा लिया है।
Licensed under cc by-sa 3.0 with attribution required.