आपका कार्य एक संतुलित-स्ट्रिंग लेना होगा और एक लेवेंशिन दूरी का प्रतिनिधित्व करने वाला पूर्णांक (वर्णों को सम्मिलित करने, हटाने या एक स्ट्रिंग को दूसरे में बदलने के लिए बदलना होगा) और आपको उस दूरी के साथ संतुलित तारों की संख्या का पता लगाना होगा मूल स्ट्रिंग से (यानी कि स्ट्रिंग के पड़ोस)।
शर्तों
संतुलित तारों में केवल वर्ण शामिल होंगे
()<>[]{}
आपको केवल सकारात्मक दूरियों के लिए पड़ोस खोजने के लिए कहा जाएगा
इनपुट और आउटपुट लचीला है। जब तक आप सभी उचित डेटा लेते हैं और किसी भी खामी का उल्लंघन किए बिना सही उत्तर का उत्पादन करते हैं, मैं आपके उत्तर से खुश हूं।
यदि आप चुनते हैं तो आप अपने सभी पूर्णांक इनपुट को 2 से विभाजित कर सकते हैं।
यह कोड-गोल्फ है इसलिए उद्देश्य आपके उत्तर में बाइट्स की संख्या को कम करना है
परीक्षण के मामलों
Case | Distance | Size of Neighborhood
--------------------------------------------
() | 2 | 18
({}) | 2 | 33
(()) | 2 | 32
<> | 4 | 186
[][] | 4 | 688
<(){}> | 4 | 1379
{} | 6 | 2270
[]{}[] | 6 | 41097
यहाँ कुछ छोटे उदाहरण दिए गए हैं जिनमें वास्तविक पड़ोस शामिल हैं:
(), 2 :
{'', '<>', '()[]', '()()', '(())', '([])', '()<>', '{}', '{()}', '<>()', '(){}', '{}()', '<()>', '(<>)', '[()]', '[]()', '({})', '[]'}
({}), 2 :
{'([]{})', '()', '{}', '<({})>', '({<>})', '<{}>', '({()})', '(<>{})', '({}<>)', '({[]})', '(({}))', '({{}})', '({}[])', '{({})}', '({})()', '{}({})', '(())', '()({})', '([])', '<>({})', '({}{})', '({}){}', '({})<>', '(<{}>)', '({})[]', '((){})', '[{}]', '{{}}', '[]({})', '(<>)', '({}())', '([{}])', '[({})]'}
(()), 2 :
{'(())[]', '<>(())', '()', '{}(())', '{()}', '({()})', '{(())}', '(([]))', '(({}))', '(()[])', '(())<>', '((()))', '([])', '((<>))', '()(())', '(<()>)', '([()])', '[(())]', '(()){}', '(())()', '(()())', '(<>())', '(()<>)', '((){})', '<(())>', '<()>', '([]())', '(<>)', '({}())', '[()]', '({})', '[](())'}
<>, 4 :
{'<><<>>', '(<>)<>', '[<>][]', '<<><>>', '(){<>}', '(<>)()', '[<()>]', '<({})>', '<>()<>', '<[<>]>', '[][]<>', '<>[]<>', '<><><>', '[]<{}>', '[]<<>>', '[]<><>', '{<><>}', '[{<>}]', '<(<>)>', '(())<>', '{}<>{}', '()(<>)', '{()<>}', '(())', '{<>{}}', '(<><>)', '([])<>', '[]<[]>', '<{}<>>', '<><()>', '{()}<>', '{{}}<>', '{<>()}', '<<>>()', '{<<>>}', '<()>()', '<[]>()', '<>[<>]', '(<>())', '{}<>()', '(()<>)', '[{}]', '{{}}', '[]()', '[(<>)]', '<{}[]>', '<<>>[]', '{}<()>', '<>', '[()]<>', '<()><>', '[[]]<>', '[{}]<>', '[]<>[]', '()[<>]', '[]<>()', '{<>}{}', '{<[]>}', '<>(<>)', '(<>)[]', '<{}>()', '{}<><>', '{<>}()', '{[]}', '{[]}<>', '<<<>>>', '[]<()>', '<<[]>>', '<<{}>>', '[[]]', '()()<>', '[]{<>}', '<><[]>', '[[]<>]', '<{}()>', '<{<>}>', '<[]{}>', '{}<{}>', '<{}>[]', '()<<>>', '(<()>)', '[]{}', '{{}<>}', '{}()', '()<>[]', '<{}><>', '{[<>]}', '<><{}>', '<(())>', '<><>{}', '[()]', '<<>>{}', '{}{}<>', '[<<>>]', '<[][]>', '(<<>>)', '<[]><>', '[<>]<>', '[<>[]]', '[{}<>]', '{()}', '{<>[]}', '[]{}<>', '{(<>)}', '(<[]>)', '()[]<>', '<>{<>}', '{[]<>}', '(<>{})', '({}<>)', '[<><>]', '<><>()', '{}[<>]', '<{[]}>', '<<()>>', '<<>{}>', '([<>])', '<[]()>', '()()', '([])', '[[<>]]', '((<>))', '[](<>)', '(){}<>', '[()<>]', '<([])>', '<()()>', '[][]', '<<>[]>', '[<[]>]', '({})<>', '<{{}}>', '<[{}]>', '<{}{}>', '{}(<>)', '<<>><>', '[<>()]', '[][<>]', '({})', '{}[]<>', '{}<[]>', '<[()]>', '()[]', '<()>[]', '{{<>}}', '(<>){}', '{}{}', '({<>})', '{<()>}', '{}{<>}', '[]()<>', '<[]>[]', '(<>[])', '<[]>{}', '{}()<>', '()<[]>', '()<{}>', '{}<<>>', '<{}>{}', '{}[]', '()<>{}', '<()<>>', '[<>{}]', '{<>}[]', '<<>()>', '<><>[]', '{<{}>}', '<()[]>', '()<><>', '[<>]()', '()<>()', '{}<>[]', '<{()}>', '(<{}>)', '(){}', '()<()>', '<(){}>', '{<>}<>', '<[[]]>', '[]<>{}', '([]<>)', '<[]<>>', '[<>]{}', '<()>{}', '<>{}<>', '[<{}>]'}