विल्सन स्कोर अंतराल सफलता की प्रायिकता के विश्वास अंतराल, Bernoulli परीक्षणों का एक सेट में सफलता के अनुपात पर आधारित है (: एक Bernoulli परीक्षण एक जिसमें ठीक दो परिणामों संभव हो रहे हैं परीक्षण है सफलता या विफलता )। अंतराल निम्नलिखित सूत्र द्वारा दिया गया है:
सूत्र द्वारा दिए गए दो मान अंतराल के ऊपरी और निचले सीमा हैं। n S और n F क्रमशः सफलता और असफलताओं की संख्या है, और n कुल परीक्षणों की संख्या है ( n S + n F के बराबर )। z वांछित मान के स्तर पर निर्भर एक पैरामीटर है। इस चुनौती के प्रयोजनों के लिए, z = 1.96 का उपयोग किया जाएगा (एक 95% विश्वास अंतराल के अनुसार) 1 ।
गैर-नकारात्मक पूर्णांक n S और n F को देखते हुए , विल्सन स्कोर अंतराल की सीमा को आउटपुट करता है।
नियम
- आउटपुट आपकी भाषा के फ़्लोटिंग-पॉइंट कार्यान्वयन की सीमाओं के भीतर सही मानों के लिए यथासंभव सटीक होना चाहिए, फ़्लोटिंग-पॉइंट अंकगणितीय अशुद्धियों के कारण किसी भी संभावित मुद्दों की अनदेखी करना। यदि आपकी भाषा मनमाने ढंग से सटीक अंकगणित करने में सक्षम है, तो यह कम से कम IEEE 754 डबल-सटीक अंकगणित जितना सटीक होना चाहिए।
- इनपुट आपकी भाषा के मूल पूर्णांक प्रकार के लिए प्रतिनिधित्व करने योग्य सीमा के भीतर होंगे, और आउटपुट आपकी भाषा के मूल फ़्लोटिंग-पॉइंट प्रकार के लिए प्रतिनिधित्व योग्य सीमा के भीतर होंगे।
- n हमेशा सकारात्मक रहेगा।
- आउटपुट का क्रम मायने नहीं रखता है।
परीक्षण के मामलों
प्रारूप: n_s, n_f => lower, upper
0, 1 => 0.0, 0.7934567085261071
1, 0 => 0.20654329147389294, 1.0
1, 1 => 0.09452865480086611, 0.905471345199134
1, 10 => 0.016231752262825982, 0.3773646254862038
10, 1 => 0.6226353745137962, 0.9837682477371741
10, 90 => 0.05522854161313612, 0.1743673043676654
90, 10 => 0.8256326956323345, 0.9447714583868639
25, 75 => 0.17545094003724265, 0.3430464637007583
75, 25 => 0.6569535362992417, 0.8245490599627573
50, 50 => 0.40382982859014716, 0.5961701714098528
0, 100 => 0.0, 0.03699480747600191
100, 0 => 0.9630051925239981, 1.0
z
मूल्य1-α/2
मानक सामान्य बंटन, जहां की वें quantileα
महत्व स्तर है। यदि आप एक 95% विश्वास अंतराल चाहते हैं, तो आपका महत्व स्तर हैα=0.05
, औरz
मूल्य है1.96
।